Question
upstudy study bank question image url

Determine the value of \( x \) to one decimal place \( \cos 2 x=0,50 \)

Ask by Lawson Mcguire. in South Africa
Feb 21,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

The values of \( x \) are approximately \( 0.5 \) and \( 2.6 \).

Solution

Solve the equation by following steps: - step0: Solve for \(x\): \(\cos\left(2x\right)=0.5\) - step1: Use the inverse trigonometric function: \(2x=\arccos\left(0.5\right)\) - step2: Calculate: \(\begin{align}&2x=\frac{\pi }{3}\\&2x=\frac{5\pi }{3}\end{align}\) - step3: Add the period: \(\begin{align}&2x=\frac{\pi }{3}+2k\pi ,k \in \mathbb{Z}\\&2x=\frac{5\pi }{3}+2k\pi ,k \in \mathbb{Z}\end{align}\) - step4: Calculate: \(\begin{align}&x=\frac{\pi }{6}+k\pi ,k \in \mathbb{Z}\\&2x=\frac{5\pi }{3}+2k\pi ,k \in \mathbb{Z}\end{align}\) - step5: Calculate: \(\begin{align}&x=\frac{\pi }{6}+k\pi ,k \in \mathbb{Z}\\&x=\frac{5\pi }{6}+k\pi ,k \in \mathbb{Z}\end{align}\) - step6: Find the union: \(x=\left\{ \begin{array}{l}\frac{\pi }{6}+k\pi \\\frac{5\pi }{6}+k\pi \end{array}\right.,k \in \mathbb{Z}\) To solve the equation \( \cos 2x = 0.5 \), we can find the general solutions for \( 2x \) first. The cosine function equals \( 0.5 \) at the angles: - \( 2x = \frac{\pi}{3} + 2k\pi \) - \( 2x = \frac{5\pi}{3} + 2k\pi \) where \( k \) is any integer. Now, we can solve for \( x \) by dividing each equation by 2: 1. From \( 2x = \frac{\pi}{3} + 2k\pi \): \[ x = \frac{\pi}{6} + k\pi \] 2. From \( 2x = \frac{5\pi}{3} + 2k\pi \): \[ x = \frac{5\pi}{6} + k\pi \] Next, we can find the approximate values of \( x \) for \( k = 0 \): 1. For \( k = 0 \): - \( x = \frac{\pi}{6} \approx 0.524 \) - \( x = \frac{5\pi}{6} \approx 2.618 \) Now, rounding these values to one decimal place, we have: - \( x \approx 0.5 \) - \( x \approx 2.6 \) Thus, the values of \( x \) to one decimal place are approximately \( 0.5 \) and \( 2.6 \).

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

The Deep Dive

To solve the equation \( \cos 2x = 0.50 \), we start by taking the inverse cosine of both sides: \[ 2x = \arccos(0.50) \] Calculating this gives: \[ 2x = \frac{\pi}{3} \quad \text{or} \quad 2x = \frac{5\pi}{3} + 2k\pi, \quad k \in \mathbb{Z} \] Now, dividing everything by 2 to solve for \( x \): \[ x = \frac{\pi}{6} \quad \text{or} \quad x = \frac{5\pi}{6} + k\pi \] Evaluating these gives two main values of \( x \): 1. \( x \approx 0.524 \) radians (or \( 30^\circ \)) 2. \( x \approx 2.618 \) radians (or \( 150^\circ \)) To express \( x \) to one decimal place, we can round: 1. \( x \approx 0.5 \) 2. \( x \approx 2.6 \) Thus, the value of \( x \) to one decimal place could be \( 0.5 \) or \( 2.6 \), depending on the angle desired.

Related Questions

8. Simplify without using a calculator. (8.1) \( \frac{\sin \left(180^{\circ}-x\right) \cdot \tan \left(360^{\circ}-x\right)}{\cos \left(80^{\circ}-x\right)} \times \frac{\cos \left(-180^{\circ}-x\right)}{\cos \left(360^{\circ}+x\right) \sin \left(360^{\circ}-x\right)} \) \( 8.2 \frac{\cos 135^{\circ} \sin 160^{\circ}}{\sin 225^{\circ} \cos 70^{\circ}} \) (8.3) \( \frac{\sin (-\theta)+\cos 120^{\circ}+\tan \left(-180^{\circ}-\theta\right)}{\sin ^{2} 225^{\circ}-\tan (-\theta)-\cos \left(90^{\circ}+\theta\right)} \) B.4 \( 4^{x} \frac{\sin 247^{\circ} \cdot \tan 23^{\circ} \cdot \cos 113^{\circ}}{\sin \left(-157^{\circ}\right)} \) (8.5) \( \frac{3 \cos 150^{\circ} \cdot \sin 270^{\circ}}{\tan \left(-45^{\circ}\right) \cdot \cos 600^{\circ}} \) 8.6) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}+x\right)}{\sin (-x)}-\sin y \cdot \cos \left(90^{\circ}-y\right) \) \( 8.7 \frac{\tan 30^{\circ} \cdot \sin 60^{\circ} \cdot \cos 25^{\circ}}{\cos 135^{\circ} \cdot \sin \left(-45^{\circ}\right) \cdot \sin 65^{\circ}} \) 6.8) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}-x\right)}{\cos \left(90^{\circ}+x\right)}-\frac{\cos \left(180^{\circ}-x\right)}{\sin \left(90^{\circ}+x\right)} \) \( 8.9 \frac{\sin 189^{\circ}}{\tan 549^{\circ}}-\frac{\cos ^{2}\left(-9^{\circ}\right)}{\sin 99^{\circ}} \) Solving trigonometric equations (no calculators) (1.) If \( \sin \mathrm{A}=\frac{-3}{5} \) and \( 0^{\circ}<\mathrm{A}<270^{\circ} \) determine the value of: \( 1.1 \cos A \) \( 1.2 \tan A \). (2.) If \( -5 \tan \theta-3=0 \) and \( \sin \theta<0 \), determine: \( 2.1 \sin ^{2} \theta^{\circ} \) \( 2.25 \cos \theta \) \( 2.3 \quad 1-\cos ^{2} \theta \) 3. If \( 13 \cos \theta+12=0 \) and \( 180^{\circ}<\theta<360^{\circ} \), evaluate: \( 3.2 \tan \theta \) \( 3.1 \sin \theta \cos \theta \) \( 3.3 \sin ^{2} \theta+\cos ^{2} \theta \). (4.) If \( 3 \tan \theta-2=0 \) and \( \theta \in\left[90^{\circ} ; 360^{\circ}\right] \), determine, the value of \( \sqrt{13}(\sin \theta-\cos \theta \) (5.) If \( \cos 52^{\circ}=k \) as illustrated in the diagram, determine each of the following i
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy