Determine the value of \( x \) to one decimal place \( \cos 2 x=0,50 \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


The Deep Dive
To solve the equation \( \cos 2x = 0.50 \), we start by taking the inverse cosine of both sides: \[ 2x = \arccos(0.50) \] Calculating this gives: \[ 2x = \frac{\pi}{3} \quad \text{or} \quad 2x = \frac{5\pi}{3} + 2k\pi, \quad k \in \mathbb{Z} \] Now, dividing everything by 2 to solve for \( x \): \[ x = \frac{\pi}{6} \quad \text{or} \quad x = \frac{5\pi}{6} + k\pi \] Evaluating these gives two main values of \( x \): 1. \( x \approx 0.524 \) radians (or \( 30^\circ \)) 2. \( x \approx 2.618 \) radians (or \( 150^\circ \)) To express \( x \) to one decimal place, we can round: 1. \( x \approx 0.5 \) 2. \( x \approx 2.6 \) Thus, the value of \( x \) to one decimal place could be \( 0.5 \) or \( 2.6 \), depending on the angle desired.
