Pregunta
upstudy study bank question image url

Determine the value of \( x \) to one decimal place \( \cos 2 x=0,50 \)

Ask by Lawson Mcguire. in South Africa
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The values of \( x \) are approximately \( 0.5 \) and \( 2.6 \).

Solución

Solve the equation by following steps: - step0: Solve for \(x\): \(\cos\left(2x\right)=0.5\) - step1: Use the inverse trigonometric function: \(2x=\arccos\left(0.5\right)\) - step2: Calculate: \(\begin{align}&2x=\frac{\pi }{3}\\&2x=\frac{5\pi }{3}\end{align}\) - step3: Add the period: \(\begin{align}&2x=\frac{\pi }{3}+2k\pi ,k \in \mathbb{Z}\\&2x=\frac{5\pi }{3}+2k\pi ,k \in \mathbb{Z}\end{align}\) - step4: Calculate: \(\begin{align}&x=\frac{\pi }{6}+k\pi ,k \in \mathbb{Z}\\&2x=\frac{5\pi }{3}+2k\pi ,k \in \mathbb{Z}\end{align}\) - step5: Calculate: \(\begin{align}&x=\frac{\pi }{6}+k\pi ,k \in \mathbb{Z}\\&x=\frac{5\pi }{6}+k\pi ,k \in \mathbb{Z}\end{align}\) - step6: Find the union: \(x=\left\{ \begin{array}{l}\frac{\pi }{6}+k\pi \\\frac{5\pi }{6}+k\pi \end{array}\right.,k \in \mathbb{Z}\) To solve the equation \( \cos 2x = 0.5 \), we can find the general solutions for \( 2x \) first. The cosine function equals \( 0.5 \) at the angles: - \( 2x = \frac{\pi}{3} + 2k\pi \) - \( 2x = \frac{5\pi}{3} + 2k\pi \) where \( k \) is any integer. Now, we can solve for \( x \) by dividing each equation by 2: 1. From \( 2x = \frac{\pi}{3} + 2k\pi \): \[ x = \frac{\pi}{6} + k\pi \] 2. From \( 2x = \frac{5\pi}{3} + 2k\pi \): \[ x = \frac{5\pi}{6} + k\pi \] Next, we can find the approximate values of \( x \) for \( k = 0 \): 1. For \( k = 0 \): - \( x = \frac{\pi}{6} \approx 0.524 \) - \( x = \frac{5\pi}{6} \approx 2.618 \) Now, rounding these values to one decimal place, we have: - \( x \approx 0.5 \) - \( x \approx 2.6 \) Thus, the values of \( x \) to one decimal place are approximately \( 0.5 \) and \( 2.6 \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To solve the equation \( \cos 2x = 0.50 \), we start by taking the inverse cosine of both sides: \[ 2x = \arccos(0.50) \] Calculating this gives: \[ 2x = \frac{\pi}{3} \quad \text{or} \quad 2x = \frac{5\pi}{3} + 2k\pi, \quad k \in \mathbb{Z} \] Now, dividing everything by 2 to solve for \( x \): \[ x = \frac{\pi}{6} \quad \text{or} \quad x = \frac{5\pi}{6} + k\pi \] Evaluating these gives two main values of \( x \): 1. \( x \approx 0.524 \) radians (or \( 30^\circ \)) 2. \( x \approx 2.618 \) radians (or \( 150^\circ \)) To express \( x \) to one decimal place, we can round: 1. \( x \approx 0.5 \) 2. \( x \approx 2.6 \) Thus, the value of \( x \) to one decimal place could be \( 0.5 \) or \( 2.6 \), depending on the angle desired.

preguntas relacionadas

8. Simplify without using a calculator. (8.1) \( \frac{\sin \left(180^{\circ}-x\right) \cdot \tan \left(360^{\circ}-x\right)}{\cos \left(80^{\circ}-x\right)} \times \frac{\cos \left(-180^{\circ}-x\right)}{\cos \left(360^{\circ}+x\right) \sin \left(360^{\circ}-x\right)} \) \( 8.2 \frac{\cos 135^{\circ} \sin 160^{\circ}}{\sin 225^{\circ} \cos 70^{\circ}} \) (8.3) \( \frac{\sin (-\theta)+\cos 120^{\circ}+\tan \left(-180^{\circ}-\theta\right)}{\sin ^{2} 225^{\circ}-\tan (-\theta)-\cos \left(90^{\circ}+\theta\right)} \) B.4 \( 4^{x} \frac{\sin 247^{\circ} \cdot \tan 23^{\circ} \cdot \cos 113^{\circ}}{\sin \left(-157^{\circ}\right)} \) (8.5) \( \frac{3 \cos 150^{\circ} \cdot \sin 270^{\circ}}{\tan \left(-45^{\circ}\right) \cdot \cos 600^{\circ}} \) 8.6) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}+x\right)}{\sin (-x)}-\sin y \cdot \cos \left(90^{\circ}-y\right) \) \( 8.7 \frac{\tan 30^{\circ} \cdot \sin 60^{\circ} \cdot \cos 25^{\circ}}{\cos 135^{\circ} \cdot \sin \left(-45^{\circ}\right) \cdot \sin 65^{\circ}} \) 6.8) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}-x\right)}{\cos \left(90^{\circ}+x\right)}-\frac{\cos \left(180^{\circ}-x\right)}{\sin \left(90^{\circ}+x\right)} \) \( 8.9 \frac{\sin 189^{\circ}}{\tan 549^{\circ}}-\frac{\cos ^{2}\left(-9^{\circ}\right)}{\sin 99^{\circ}} \) Solving trigonometric equations (no calculators) (1.) If \( \sin \mathrm{A}=\frac{-3}{5} \) and \( 0^{\circ}<\mathrm{A}<270^{\circ} \) determine the value of: \( 1.1 \cos A \) \( 1.2 \tan A \). (2.) If \( -5 \tan \theta-3=0 \) and \( \sin \theta<0 \), determine: \( 2.1 \sin ^{2} \theta^{\circ} \) \( 2.25 \cos \theta \) \( 2.3 \quad 1-\cos ^{2} \theta \) 3. If \( 13 \cos \theta+12=0 \) and \( 180^{\circ}<\theta<360^{\circ} \), evaluate: \( 3.2 \tan \theta \) \( 3.1 \sin \theta \cos \theta \) \( 3.3 \sin ^{2} \theta+\cos ^{2} \theta \). (4.) If \( 3 \tan \theta-2=0 \) and \( \theta \in\left[90^{\circ} ; 360^{\circ}\right] \), determine, the value of \( \sqrt{13}(\sin \theta-\cos \theta \) (5.) If \( \cos 52^{\circ}=k \) as illustrated in the diagram, determine each of the following i
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad