Question
upstudy study bank question image url

3. \( -48+4|9-x| \geq-36 \)

Ask by Peterson Osborne. in Mexico
Feb 19,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

La solución de la desigualdad \( -48 + 4|9 - x| \geq -36 \) es \( x \leq 6 \) o \( x \geq 12 \).

Solution

Para resolver la desigualdad \( -48 + 4|9 - x| \geq -36 \), seguiremos los siguientes pasos: 1. **Aislar el valor absoluto**: Primero, sumamos 48 a ambos lados de la desigualdad. \[ 4|9 - x| \geq -36 + 48 \] Esto simplifica a: \[ 4|9 - x| \geq 12 \] 2. **Dividir por 4**: Ahora, dividimos ambos lados de la desigualdad por 4. \[ |9 - x| \geq 3 \] 3. **Resolver la desigualdad del valor absoluto**: La desigualdad \( |9 - x| \geq 3 \) se puede descomponer en dos casos: - Caso 1: \( 9 - x \geq 3 \) - Caso 2: \( 9 - x \leq -3 \) Vamos a resolver ambos casos. **Caso 1**: \[ 9 - x \geq 3 \] Restamos 9 de ambos lados: \[ -x \geq 3 - 9 \] \[ -x \geq -6 \] Multiplicamos por -1 (cambiando la dirección de la desigualdad): \[ x \leq 6 \] **Caso 2**: \[ 9 - x \leq -3 \] Restamos 9 de ambos lados: \[ -x \leq -3 - 9 \] \[ -x \leq -12 \] Multiplicamos por -1 (cambiando la dirección de la desigualdad): \[ x \geq 12 \] 4. **Conclusión**: Combinando ambos resultados, tenemos que: \[ x \leq 6 \quad \text{o} \quad x \geq 12 \] Por lo tanto, la solución de la desigualdad \( -48 + 4|9 - x| \geq -36 \) es: \[ x \leq 6 \quad \text{o} \quad x \geq 12 \]

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

The Deep Dive

To solve the inequality \( -48 + 4|9 - x| \geq -36 \), we first isolate the absolute value expression. Adding 48 to both sides gives us \( 4|9 - x| \geq 12 \). Dividing by 4 results in \( |9 - x| \geq 3 \). Next, we break this absolute value into two cases: 1. \( 9 - x \geq 3 \) 2. \( 9 - x \leq -3 \) For the first case, \( 9 - x \geq 3 \) simplifies to \( x \leq 6 \). For the second case, \( 9 - x \leq -3 \) simplifies to \( x \geq 12 \). So, the solution to the inequality is \( x \leq 6 \) or \( x \geq 12 \).

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy