Question
upstudy study bank question image url

6.- \( \operatorname{Cot} A 7 / 3 \) Determina Sec de B

Ask by Robbins Chavez. in Mexico
Feb 19,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

sec B es igual a (√58)/3.

Solution

Asumamos que A y B son los ángulos agudos de un triángulo rectángulo, de modo que se cumple A + B = 90°. En ese caso se tiene la relación   cot A = tan (90° – A) = tan B Según el enunciado, cot A = 7/3, por lo que:   tan B = 7/3 Recordamos la identidad fundamental para la función secante:   sec²B = 1 + tan²B Calculamos tan²B:   tan²B = (7/3)² = 49/9 Luego:   sec²B = 1 + 49/9 = (9/9) + (49/9) = 58/9 Finalmente, tomando la raíz (recordando que B es agudo y, por tanto, sec B > 0):   sec B = √(58/9) = (√58)/3 Respuesta: sec B = (√58)/3.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Beyond the Answer

Para determinar \( \sec B \), primero necesitamos relacionar los ángulos \( A \) y \( B \). Sabemos que \( \cot A = \frac{7}{3} \), lo que significa que en un triángulo rectángulo, la longitud del lado adyacente a \( A \) es 7 y la longitud del lado opuesto es 3. Utilizando el teorema de Pitágoras, encontramos la hipotenusa \( h \): \[ h = \sqrt{7^2 + 3^2} = \sqrt{49 + 9} = \sqrt{58} \] Ahora, sabemos que \( \sec B = \frac{1}{\cos B} \) y podemos relacionar \( B \) y \( A \) mediante \( A + B = 90^\circ \) (en un triángulo rectángulo): Así que \( \cos B = \sin A \), lo que significa que \[ \sin A = \frac{\text{opuesto}}{\text{hipotenusa}} = \frac{3}{\sqrt{58}} \] Por lo tanto, \[ \sec B = \frac{1}{\cos B} = \frac{1}{\sin A} = \frac{\sqrt{58}}{3} \] Así que \( \sec B = \frac{\sqrt{58}}{3} \).

Related Questions

Latest Trigonometry Questions

8. Simplify without using a calculator. (8.1) \( \frac{\sin \left(180^{\circ}-x\right) \cdot \tan \left(360^{\circ}-x\right)}{\cos \left(80^{\circ}-x\right)} \times \frac{\cos \left(-180^{\circ}-x\right)}{\cos \left(360^{\circ}+x\right) \sin \left(360^{\circ}-x\right)} \) \( 8.2 \frac{\cos 135^{\circ} \sin 160^{\circ}}{\sin 225^{\circ} \cos 70^{\circ}} \) (8.3) \( \frac{\sin (-\theta)+\cos 120^{\circ}+\tan \left(-180^{\circ}-\theta\right)}{\sin ^{2} 225^{\circ}-\tan (-\theta)-\cos \left(90^{\circ}+\theta\right)} \) B.4 \( 4^{x} \frac{\sin 247^{\circ} \cdot \tan 23^{\circ} \cdot \cos 113^{\circ}}{\sin \left(-157^{\circ}\right)} \) (8.5) \( \frac{3 \cos 150^{\circ} \cdot \sin 270^{\circ}}{\tan \left(-45^{\circ}\right) \cdot \cos 600^{\circ}} \) 8.6) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}+x\right)}{\sin (-x)}-\sin y \cdot \cos \left(90^{\circ}-y\right) \) \( 8.7 \frac{\tan 30^{\circ} \cdot \sin 60^{\circ} \cdot \cos 25^{\circ}}{\cos 135^{\circ} \cdot \sin \left(-45^{\circ}\right) \cdot \sin 65^{\circ}} \) 6.8) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}-x\right)}{\cos \left(90^{\circ}+x\right)}-\frac{\cos \left(180^{\circ}-x\right)}{\sin \left(90^{\circ}+x\right)} \) \( 8.9 \frac{\sin 189^{\circ}}{\tan 549^{\circ}}-\frac{\cos ^{2}\left(-9^{\circ}\right)}{\sin 99^{\circ}} \) Solving trigonometric equations (no calculators) (1.) If \( \sin \mathrm{A}=\frac{-3}{5} \) and \( 0^{\circ}<\mathrm{A}<270^{\circ} \) determine the value of: \( 1.1 \cos A \) \( 1.2 \tan A \). (2.) If \( -5 \tan \theta-3=0 \) and \( \sin \theta<0 \), determine: \( 2.1 \sin ^{2} \theta^{\circ} \) \( 2.25 \cos \theta \) \( 2.3 \quad 1-\cos ^{2} \theta \) 3. If \( 13 \cos \theta+12=0 \) and \( 180^{\circ}<\theta<360^{\circ} \), evaluate: \( 3.2 \tan \theta \) \( 3.1 \sin \theta \cos \theta \) \( 3.3 \sin ^{2} \theta+\cos ^{2} \theta \). (4.) If \( 3 \tan \theta-2=0 \) and \( \theta \in\left[90^{\circ} ; 360^{\circ}\right] \), determine, the value of \( \sqrt{13}(\sin \theta-\cos \theta \) (5.) If \( \cos 52^{\circ}=k \) as illustrated in the diagram, determine each of the following i
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy