Question

\( \int _{}^{}\frac{1}{1+\sin (x)^{2}} d x \)

Ask by Davey Cox. in Turkey
Jan 24,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

\[ \int \frac{1}{1 + \sin^2(x)} \, dx = \frac{1}{\sqrt{2}} \tan^{-1}\left( \sqrt{2} \tan(x) \right) + C \]

Solution

لحساب التكامل: \[ \int \frac{1}{1 + \sin^2(x)} \, dx \] نتبع الخطوات التالية: 1. **التبسيط باستخدام الهوية المثلثية:** نستخدم الهوية المثلثية لتحويل المقام: \[ 1 + \sin^2(x) = \frac{3 - \cos(2x)}{2} \] إذن يصبح التكامل: \[ \int \frac{2}{3 - \cos(2x)} \, dx \] 2. **التبديل بالمتغير:** نجري التبديل التالي: \[ u = 2x \quad \Rightarrow \quad du = 2\,dx \quad \Rightarrow \quad dx = \frac{du}{2} \] يبسط التكامل إلى: \[ \int \frac{2}{3 - \cos(u)} \cdot \frac{du}{2} = \int \frac{1}{3 - \cos(u)} \, du \] 3. **استخدام صيغة التكامل القياسية:** نستخدم الصيغة المعروفة للتكامل: \[ \int \frac{1}{a - b\cos(u)} \, du = \frac{2}{\sqrt{a^2 - b^2}} \tan^{-1}\left( \tan\left(\frac{u}{2}\right) \cdot \sqrt{\frac{a + b}{a - b}} \right) + C \] في حالتنا، \( a = 3 \) و\( b = 1 \)، لذا نحصل على: \[ \int \frac{1}{3 - \cos(u)} \, du = \frac{2}{\sqrt{9 - 1}} \tan^{-1}\left( \tan\left(\frac{u}{2}\right) \cdot \sqrt{\frac{3 + 1}{3 - 1}} \right) + C = \frac{2}{2\sqrt{2}} \tan^{-1}\left( \tan\left(\frac{u}{2}\right) \cdot \sqrt{2} \right) + C \] أي: \[ \int \frac{1}{3 - \cos(u)} \, du = \frac{1}{\sqrt{2}} \tan^{-1}\left( \sqrt{2} \tan\left(\frac{u}{2}\right) \right) + C \] 4. **استرجاع المتغير الأصلي:** نظرًا لأن \( u = 2x \)، نحصل على: \[ \frac{1}{\sqrt{2}} \tan^{-1}\left( \sqrt{2} \tan(x) \right) + C \] **إذن، حل التكامل هو:** \[ \int \frac{1}{1 + \sin^2(x)} \, dx = \frac{1}{\sqrt{2}} \tan^{-1}\left( \sqrt{2} \tan(x) \right) + C \] حيث \( C \) هو ثابت التكامل.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Extra Insights

To evaluate the integral \( \int \frac{1}{1+\sin^2(x)} \, dx \), you can utilize a trigonometric identity and a substitution. A common approach is to use the Weierstrass substitution, \( t = \tan\left(\frac{x}{2}\right) \), which transforms sine and cosine functions into a rational form. This substitution leads to simplifying the integral into a more manageable form involving \( t \). Another option for solving this integral is to use the fact that \( 1 + \sin^2(x) = \frac{2 + \cos(2x)}{2} \) and thereby rewrite the integral. By doing so, you can separate it into a simpler integral that can be evaluated using standard techniques. Happy integrating!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy