Question
upstudy study bank question image url

Jika polinomial \( f(x)=2 x^{3}-p x^{2}+q x+6 \) dan \( g(x)=2 x^{3}+3 x^{2}-4 x-5 \) memberikan sisa yang sama ketika dibagi oleh \( (x+1) \), tentukan nilai \( p+ \) \( q .: \) A. 6 B. 4 C. 2 D. 1 E. 0

Ask by West Garza. in Indonesia
Feb 25,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

\( p + q = 4 \), so the answer is B.

Solution

To determine p + q, we need the remainders from f(x) and g(x) when divided by (x + 1) to be equal. By the Remainder Theorem: 1. Compute f(–1):   f(–1) = 2(–1)³ – p(–1)² + q(–1) + 6       = 2(–1) – p(1) – q + 6       = –2 – p – q + 6       = 4 – p – q 2. Compute g(–1):   g(–1) = 2(–1)³ + 3(–1)² – 4(–1) – 5       = 2(–1) + 3(1) + 4 – 5       = –2 + 3 + 4 – 5       = 0 Since the remainders are equal:   4 – p – q = 0   => p + q = 4 Therefore, the value of p + q is 4, which corresponds to option B.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Bonus Knowledge

Untuk menemukan nilai \( p + q \) dengan informasi bahwa kedua polinomial memberikan sisa yang sama ketika dibagi oleh \( (x+1) \), kita perlu menghitung sisa secara langsung menggunakan Teorema Sisa. Teorema ini menyatakan bahwa sisa dari pembagian polinomial \( f(x) \) dengan \( (x-a) \) adalah \( f(a) \). Pertama, kita hitung \( f(-1) \): \[ f(-1) = 2(-1)^3 - p(-1)^2 + q(-1) + 6 = -2 - p - q + 6 = 4 - p - q \] Kemudian, kita hitung \( g(-1) \): \[ g(-1) = 2(-1)^3 + 3(-1)^2 - 4(-1) - 5 = -2 + 3 + 4 - 5 = 0 \] Karena \( f(-1) \) dan \( g(-1) \) harus sama, kita memiliki: \[ 4 - p - q = 0 \] Dari sini, kita rearrange untuk mendapatkan \( p + q \): \[ p + q = 4 \] Sehingga, nilai \( p + q \) adalah 4. Jawabannya adalah: B. 4

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy