Question
upstudy study bank question image url

Jika \( \tan A=\frac{3}{4} \) dan sudut A berada di kuadran III, hitunglah nilai \( \cos (2 A) \). A. \( \frac{4}{25} \) B. \( \frac{7}{25} \) C. \( \frac{9}{25} \) D. \( \frac{18}{25} \) E. \( \frac{24}{25} \)

Ask by Luna Rose. in Indonesia
Feb 25,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

The value of \( \cos(2A) \) is \( \frac{7}{25} \), which is option B.

Solution

We are given that tan A = 3/4 and that A is in the third quadrant, where both sine and cosine are negative. Step 1: Determine sin A and cos A. Let the reference triangle have sides:  Opposite = 3, Adjacent = 4, so Hypotenuse = √(3² + 4²) = 5. Since A is in quadrant III, we have:  sin A = -3/5  cos A = -4/5 Step 2: Use the double-angle formula for cosine:  cos(2A) = cos²A - sin²A Step 3: Substitute the values:  cos(2A) = (-4/5)² - (-3/5)²   = (16/25) - (9/25)   = 7/25 Thus, the value of cos(2A) is 7/25, which corresponds to option B.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Mind Expander

Untuk menghitung \( \cos(2A) \), kita akan menggunakan rumus ganda untuk cosinus, yaitu: \[ \cos(2A) = \cos^2(A) - \sin^2(A) \] Dari \( \tan A = \frac{3}{4} \) dan karena A berada di kuadran III, kita dapat menentukan \( \sin A \) dan \( \cos A \). Karena \( \tan A = \frac{\sin A}{\cos A} \), kita bisa memvisualisasikan sudut A sebagai segitiga dengan sisi yang berlawanan (3) dan sisi yang bersebelahan (4). Dengan menggunakan teorema Pythagoras: \[ r = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5 \] Jadi, \[ \sin A = -\frac{3}{5} \quad (\text{di kuadran III, sin negatif}), \] \[ \cos A = -\frac{4}{5} \quad (\text{di kuadran III, cos negatif}). \] Sekarang, kita substitusikan nilai \( \sin A \) dan \( \cos A \) ke dalam rumus untuk \( \cos(2A) \): \[ \cos(2A) = \left(-\frac{4}{5}\right)^2 - \left(-\frac{3}{5}\right)^2 \] \[ = \frac{16}{25} - \frac{9}{25} \] \[ = \frac{7}{25} \] Dengan demikian, nilai \( \cos(2A) \) adalah \( \frac{7}{25} \), jadi jawabannya adalah B.

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy