Question
upstudy study bank question image url

Find the exact value of \( \sin \left(\frac{13 \pi}{8}\right) \). A. \( \sqrt{\frac{2+\sqrt{2}}{4}} \) B. \( \sqrt{\frac{2-\sqrt{2}}{4}} \) C. \( -\sqrt{\frac{2+\sqrt{2}}{4}} \) D. \( -\sqrt{\frac{2-\sqrt{2}}{4}} \)

Ask by Bright Hodgson. in the United States
Feb 25,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

The exact value of \( \sin \left(\frac{13 \pi}{8}\right) \) is \( -\sqrt{\frac{2-\sqrt{2}}{4}} \).

Solution

To find the exact value of \( \sin \left(\frac{13 \pi}{8}\right) \), we can start by simplifying the angle. 1. **Identify the quadrant**: The angle \( \frac{13 \pi}{8} \) is greater than \( \pi \) (which is \( \frac{8 \pi}{8} \)) and less than \( \frac{3\pi}{2} \) (which is \( \frac{12 \pi}{8} \)). Therefore, it lies in the third quadrant. 2. **Find the reference angle**: The reference angle \( \theta \) can be found by subtracting \( \pi \) from \( \frac{13 \pi}{8} \): \[ \theta = \frac{13 \pi}{8} - \pi = \frac{13 \pi}{8} - \frac{8 \pi}{8} = \frac{5 \pi}{8} \] 3. **Use the sine function in the third quadrant**: In the third quadrant, the sine function is negative. Therefore: \[ \sin \left(\frac{13 \pi}{8}\right) = -\sin \left(\frac{5 \pi}{8}\right) \] 4. **Calculate \( \sin \left(\frac{5 \pi}{8}\right) \)**: The angle \( \frac{5 \pi}{8} \) can be expressed as: \[ \frac{5 \pi}{8} = \frac{\pi}{2} - \frac{3 \pi}{8} \] Using the sine subtraction formula: \[ \sin \left(\frac{5 \pi}{8}\right) = \sin \left(\frac{\pi}{2} - \frac{3 \pi}{8}\right) = \cos \left(\frac{3 \pi}{8}\right) \] 5. **Calculate \( \cos \left(\frac{3 \pi}{8}\right) \)**: We can use the half-angle identity: \[ \cos \left(\frac{3 \pi}{8}\right) = \sqrt{\frac{1 + \cos \left(\frac{3 \pi}{4}\right)}{2}} \] Since \( \cos \left(\frac{3 \pi}{4}\right) = -\frac{\sqrt{2}}{2} \): \[ \cos \left(\frac{3 \pi}{8}\right) = \sqrt{\frac{1 - \frac{\sqrt{2}}{2}}{2}} = \sqrt{\frac{2 - \sqrt{2}}{4}} = \frac{\sqrt{2 - \sqrt{2}}}{2} \] 6. **Final calculation**: Therefore: \[ \sin \left(\frac{13 \pi}{8}\right) = -\sin \left(\frac{5 \pi}{8}\right) = -\cos \left(\frac{3 \pi}{8}\right) = -\frac{\sqrt{2 - \sqrt{2}}}{2} \] Thus, the exact value of \( \sin \left(\frac{13 \pi}{8}\right) \) is: \[ -\sqrt{\frac{2 - \sqrt{2}}{4}} \] The correct answer is: **D. \( -\sqrt{\frac{2-\sqrt{2}}{4}} \)**.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

The Deep Dive

To find the exact value of \( \sin \left(\frac{13 \pi}{8}\right) \), we can first rewrite \( \frac{13 \pi}{8} \) in terms of an angle we can easily work with. We notice that: \[ \frac{13 \pi}{8} = \pi + \frac{5 \pi}{8} \] Since \( \sin(\pi + x) = -\sin(x) \), we have: \[ \sin\left(\frac{13 \pi}{8}\right) = -\sin\left(\frac{5 \pi}{8}\right) \] Now, \( \frac{5 \pi}{8} \) is in the second quadrant where the sine function is positive, and we can express it as: \[ \frac{5 \pi}{8} = \frac{\pi}{2} - \frac{3 \pi}{8} \] Using the sine identity, \( \sin\left(\frac{\pi}{2} - x\right) = \cos(x) \), we have: \[ \sin\left(\frac{5 \pi}{8}\right) = \cos\left(\frac{3 \pi}{8}\right) \] Next, we find \( \cos\left(\frac{3 \pi}{8}\right) \) using the half-angle formula. We know: \[ \cos\left(\frac{3 \pi}{8}\right) = \cos\left(\frac{\pi}{4} + \frac{\pi}{8}\right) \] Using the cosine addition formula: \[ \cos(a + b) = \cos a \cos b - \sin a \sin b \] Substituting \( a = \frac{\pi}{4} \) and \( b = \frac{\pi}{8} \): \[ \cos\left(\frac{3 \pi}{8}\right) = \cos\left(\frac{\pi}{4}\right) \cos\left(\frac{\pi}{8}\right) - \sin\left(\frac{\pi}{4}\right) \sin\left(\frac{\pi}{8}\right) \] Knowing that \( \cos(\frac{\pi}{4}) = \frac{\sqrt{2}}{2} \) and \( \sin(\frac{\pi}{4}) = \frac{\sqrt{2}}{2} \), we can find \( \sin(\frac{\pi}{8}) \) and \( \cos(\frac{\pi}{8}) \) using their half-angle formulas: \[ \sin\left(\frac{\pi}{8}\right) = \sqrt{\frac{1 - \cos\left(\frac{\pi}{4}\right)}{2}} = \sqrt{\frac{1 - \frac{\sqrt{2}}{2}}{2}} = \sqrt{\frac{2 - \sqrt{2}}{4}} = \frac{\sqrt{2 - \sqrt{2}}}{2} \] \[ \cos\left(\frac{\pi}{8}\right) = \sqrt{\frac{1 + \cos\left(\frac{\pi}{4}\right)}{2}} = \sqrt{\frac{1 + \frac{\sqrt{2}}{2}}{2}} = \sqrt{\frac{2 + \sqrt{2}}{4}} = \frac{\sqrt{2 + \sqrt{2}}}{2} \] Now, substituting back into our cosine addition formula: \[ \cos\left(\frac{3 \pi}{8}\right) = \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2 + \sqrt{2}}}{2} - \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2 - \sqrt{2}}}{2} \] \[ = \frac{\sqrt{2}}{4} \left( \sqrt{2 + \sqrt{2}} - \sqrt{2 - \sqrt{2}} \right) \] However, since we already know \( \sin\left(\frac{13 \pi}{8}\right) = -\sin\left(\frac{5 \pi}{8}\right) = -\cos\left(\frac{3 \pi}{8}\right) \), and looking for the exact answers from the options provided, simplifying leads us to conclude: \[ \sin\left(\frac{13 \pi}{8}\right) = -\sqrt{\frac{2 - \sqrt{2}}{4}} \quad \text{(Choice D)} \] Thus, the exact value of \(

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy