Question
upstudy study bank question image url

Tentukan himpunan penyelesaian dari persamaan \( 4 \sin \left(x+15^{\circ}\right)=2 \sqrt{3} \) untuk \( 0^{\circ} \leq x \leq 360^{\circ} \). A. \( \left\{45^{\circ}, 105^{\circ}\right\} \) B. \( \left\{45^{\circ}, 145^{\circ}\right\} \) C. \( \left\{60^{\circ}, 120^{\circ}\right\} \) D. \( \left\{75^{\circ}, 125^{\circ}\right\} \) E. \( \left\{75^{\circ}, 155^{\circ}\right\} \)

Ask by Harper Donnelly. in Indonesia
Feb 25,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

The solutions are \( x = 45^\circ \) and \( x = 105^\circ \).

Solution

We start with the equation:   4 sin(x + 15°) = 2√3 Divide both sides by 4:   sin(x + 15°) = (2√3) / 4 = √3/2 Recall that sin(θ) = √3/2 when:   θ = 60° + 360°k or θ = 120° + 360°k, where k is an integer. Let θ = x + 15°. Then: Case 1:   x + 15° = 60° + 360°k → x = 60° − 15° + 360°k = 45° + 360°k Case 2:   x + 15° = 120° + 360°k → x = 120° − 15° + 360°k = 105° + 360°k Now, considering the interval 0° ≤ x ≤ 360°:   For k = 0, we get x = 45° and x = 105°.   For any other integer values of k, the solutions fall outside the required interval. Thus, the set of solutions is:   {x = 45°, x = 105°} The correct answer is A.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Beyond the Answer

Mari kita selesaikan persamaan \( 4 \sin \left(x+15^{\circ}\right) = 2 \sqrt{3} \). Langkah pertama adalah membagi kedua sisi oleh 4 untuk menyederhanakan persamaan tersebut: \[ \sin \left(x + 15^{\circ}\right) = \frac{\sqrt{3}}{2} \] Kita tahu bahwa \( \sin \theta = \frac{\sqrt{3}}{2} \) pada sudut \( 60^{\circ} \) dan \( 120^{\circ} \). Maka kita dapat menuliskan: \[ x + 15^{\circ} = 60^{\circ} + k \cdot 360^{\circ} \quad \text{atau} \quad x + 15^{\circ} = 120^{\circ} + k \cdot 360^{\circ} \] Substitusi \( k = 0 \) (karena kita hanya mencari dalam interval \( 0^{\circ} \leq x \leq 360^{\circ} \)): 1. Dari \( x + 15^{\circ} = 60^{\circ} \): \[ x = 60^{\circ} - 15^{\circ} = 45^{\circ} \] 2. Dari \( x + 15^{\circ} = 120^{\circ} \): \[ x = 120^{\circ} - 15^{\circ} = 105^{\circ} \] Dengan ini, himpunan penyelesaian dari persamaan tersebut adalah: \[ \left\{45^{\circ}, 105^{\circ}\right\} \] Jadi, jawaban yang benar adalah A. \( \left\{45^{\circ}, 105^{\circ}\right\} \).

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy