Question
upstudy study bank question image url

Bapuarr 2 1. a) \( \cos \alpha=-\frac{1}{3}, \pi<\alpha<\frac{3 \pi}{2} \). Haimu \( \sin \alpha, \operatorname{tg} \alpha, \operatorname{ctg} \alpha \) of \( \operatorname{tg} \alpha=4, \alpha-11 / \operatorname{ser} \). Havimu \( \sin \alpha, \cos \alpha, \operatorname{ctg} \alpha \)

Ask by Nguyen Kelly. in Belarus
Dec 03,2024

Upstudy AI Solution

Tutor-Verified Answer

Answer

\( \sin \alpha = -\frac{2\sqrt{2}}{3} \), \( \cos \alpha = -\frac{1}{3} \), \( \cot \alpha = 0.25 \).

Solution

Дано: 1. \( \cos \alpha = -\frac{1}{3} \), \( \pi < \alpha < \frac{3\pi}{2} \). 2. \( \tan \alpha = 4 \), \( \alpha - 11 \). Найдите \( \sin \alpha \), \( \cos \alpha \), \( \cot \alpha \). Известно, что \( \tan \alpha = \frac{\sin \alpha}{\cos \alpha} \) и \( \cot \alpha = \frac{1}{\tan \alpha} \). Из первого условия, мы можем найти \( \sin \alpha \) и \( \cos \alpha \) с помощью тригонометрических тождеств. 1. \( \cos \alpha = -\frac{1}{3} \) и \( \pi < \alpha < \frac{3\pi}{2} \) означают, что \( \alpha \) находится в четвертом квадранте, где \( \cos \alpha \) отрицателен, а \( \sin \alpha \) отрицателен. 2. Из тригонометрического тождества \( \sin^2 \alpha + \cos^2 \alpha = 1 \), мы можем найти \( \sin \alpha \). 3. Из выражения \( \tan \alpha = 4 \), мы можем найти \( \cot \alpha \). Давайте начнем с поиска \( \sin \alpha \) и \( \cos \alpha \). Calculate the value by following steps: - step0: Calculate: \(\sqrt{1-\left(\frac{-1}{3}\right)^{2}}\) - step1: Rewrite the fraction: \(\sqrt{1-\left(-\frac{1}{3}\right)^{2}}\) - step2: Subtract the numbers: \(\sqrt{\frac{8}{9}}\) - step3: Use the properties of radicals: \(\frac{\sqrt{8}}{\sqrt{9}}\) - step4: Simplify the expression: \(\frac{2\sqrt{2}}{3}\) Из выражения \( \sin^2 \alpha + \cos^2 \alpha = 1 \), мы находим, что \( \sin \alpha = -\frac{2\sqrt{2}}{3} \) и \( \cos \alpha = -\frac{1}{3} \). Теперь найдем \( \cot \alpha \) из выражения \( \cot \alpha = \frac{1}{\tan \alpha} \). Calculate the value by following steps: - step0: Calculate: \(\frac{1}{4}\) Из выражения \( \cot \alpha = \frac{1}{\tan \alpha} \), мы находим, что \( \cot \alpha = 0.25 \). Таким образом, \( \sin \alpha = -\frac{2\sqrt{2}}{3} \), \( \cos \alpha = -\frac{1}{3} \), и \( \cot \alpha = 0.25 \).

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Mind Expander

Sinus α can be calculated using the Pythagorean identity: \( \sin^2 \alpha + \cos^2 \alpha = 1 \). Given that \( \cos \alpha = -\frac{1}{3} \), we find that \( \sin \alpha = \sqrt{1 - (-\frac{1}{3})^2} = \sqrt{1 - \frac{1}{9}} = \sqrt{\frac{8}{9}} = \frac{2\sqrt{2}}{3} \). As the angle lies in the third quadrant, \( \sin \alpha \) is negative, thus \( \sin \alpha = -\frac{2\sqrt{2}}{3} \). For the tangent, defined as \( \tan \alpha = \frac{\sin \alpha}{\cos \alpha} \), we calculate: \( \tan \alpha = \frac{-\frac{2\sqrt{2}}{3}}{-\frac{1}{3}} = 2\sqrt{2} \). Consequently, \( \cot \alpha = \frac{1}{\tan \alpha} = \frac{1}{2\sqrt{2}} \). The circumstances of negative sine and cosine confirm that all values align with the quadrant positioning.

Latest Trigonometry Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy