Bapuarr 2 1. a) \( \cos \alpha=-\frac{1}{3}, \pi<\alpha<\frac{3 \pi}{2} \). Haimu \( \sin \alpha, \operatorname{tg} \alpha, \operatorname{ctg} \alpha \) of \( \operatorname{tg} \alpha=4, \alpha-11 / \operatorname{ser} \). Havimu \( \sin \alpha, \cos \alpha, \operatorname{ctg} \alpha \)
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


Mind Expander
Sinus α can be calculated using the Pythagorean identity: \( \sin^2 \alpha + \cos^2 \alpha = 1 \). Given that \( \cos \alpha = -\frac{1}{3} \), we find that \( \sin \alpha = \sqrt{1 - (-\frac{1}{3})^2} = \sqrt{1 - \frac{1}{9}} = \sqrt{\frac{8}{9}} = \frac{2\sqrt{2}}{3} \). As the angle lies in the third quadrant, \( \sin \alpha \) is negative, thus \( \sin \alpha = -\frac{2\sqrt{2}}{3} \). For the tangent, defined as \( \tan \alpha = \frac{\sin \alpha}{\cos \alpha} \), we calculate: \( \tan \alpha = \frac{-\frac{2\sqrt{2}}{3}}{-\frac{1}{3}} = 2\sqrt{2} \). Consequently, \( \cot \alpha = \frac{1}{\tan \alpha} = \frac{1}{2\sqrt{2}} \). The circumstances of negative sine and cosine confirm that all values align with the quadrant positioning.