Question
upstudy study bank question image url

Muhtiply the following polynomials. \( \begin{array}{ll}\text { 5.) } 3 x\left(-2 x^{2}+3 x-5\right) & \text { 10.) }(-4 x+y)(4 x+y) \\ \text { 6.) }-4 x^{3}\left(x^{2}+2 x+8\right) & \text { 11.) }(2 x-7)^{2} \\ \text { 7.) }(4 x+6)(2 x-1) & \text { 12.) }(3 x+8)^{2} \\ \text { B.) }(-x+y)(5 x-2 y) & \text { 13.) }(x+6)\left(4 x^{2}-2 x-1\right) \\ (5 x+1)(5 x-1) & \text { 14.) }\left(6 x^{2}-7 x-5\right)\left(x^{2}-5 x-8\right)\end{array} \)

Ask by Joseph Joseph. in the United States
Feb 21,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

Here are the expanded forms of the given polynomial multiplications: 1. **Problem 5:** \( -6x^{3} + 9x^{2} - 15x \) 2. **Problem 10:** \( y^{2} - 16x^{2} \) 3. **Problem 6:** \( -4x^{5} - 8x^{4} - 32x^{3} \) 4. **Problem 7:** \( 8x^{2} + 8x - 6 \) 5. **Problem 11:** \( 4x^{2} - 28x + 49 \) 6. **Problem 12:** \( 9x^{2} + 48x + 64 \) 7. **Problem B:** \( -5x^{2} + 7xy - 2y^{2} \) 8. **Problem 13:** \( 25x^{2} - 1 \) 9. **Problem 14:** \( 4x^{4} - 37x^{3} - 18x^{2} + 81x + 40 \) These are the simplified results of multiplying the polynomials.

Solution

Simplify the expression by following steps: - step0: Multiply the terms: \(\left(-x+y\right)\left(5x-2y\right)\) - step1: Apply the distributive property: \(-x\times 5x-\left(-x\times 2y\right)+y\times 5x-y\times 2y\) - step2: Multiply the terms: \(-5x^{2}-\left(-2xy\right)+5yx-2y^{2}\) - step3: Remove the parentheses: \(-5x^{2}+2xy+5yx-2y^{2}\) - step4: Add the terms: \(-5x^{2}+7xy-2y^{2}\) Expand the expression \( (4 x+6)(2 x-1) \) Simplify the expression by following steps: - step0: Multiply the terms: \(\left(4x+6\right)\left(2x-1\right)\) - step1: Apply the distributive property: \(4x\times 2x-4x\times 1+6\times 2x-6\times 1\) - step2: Multiply the terms: \(8x^{2}-4x+12x-6\) - step3: Add the terms: \(8x^{2}+8x-6\) Expand the expression \( (6 x^{2}-7 x-5)(x^{2}-5 x-8) \) Simplify the expression by following steps: - step0: Multiply the terms: \(\left(6x^{2}-7x-5\right)\left(x^{2}-5x-8\right)\) - step1: Apply the distributive property: \(6x^{2}\times x^{2}-6x^{2}\times 5x-6x^{2}\times 8-7x\times x^{2}-\left(-7x\times 5x\right)-\left(-7x\times 8\right)-5x^{2}-\left(-5\times 5x\right)-\left(-5\times 8\right)\) - step2: Multiply the terms: \(6x^{4}-30x^{3}-48x^{2}-7x^{3}-\left(-35x^{2}\right)-\left(-56x\right)-5x^{2}-\left(-25x\right)-\left(-40\right)\) - step3: Remove the parentheses: \(6x^{4}-30x^{3}-48x^{2}-7x^{3}+35x^{2}+56x-5x^{2}+25x+40\) - step4: Subtract the terms: \(6x^{4}-37x^{3}-18x^{2}+81x+40\) Expand the expression \( (2 x-7)^{2} \) Simplify the expression by following steps: - step0: Calculate: \(\left(2x-7\right)^{2}\) - step1: Calculate: \(4x^{2}-28x+49\) Expand the expression \( (3 x+8)^{2} \) Simplify the expression by following steps: - step0: Calculate: \(\left(3x+8\right)^{2}\) - step1: Calculate: \(9x^{2}+48x+64\) Expand the expression \( (-4 x+y)(4 x+y) \) Simplify the expression by following steps: - step0: Multiply the terms: \(\left(-4x+y\right)\left(4x+y\right)\) - step1: Reorder the terms: \(\left(y-4x\right)\left(y+4x\right)\) - step2: Simplify the product: \(y^{2}-\left(4x\right)^{2}\) - step3: Evaluate the power: \(y^{2}-16x^{2}\) Expand the expression \( 3 x(-2 x^{2}+3 x-5) \) Simplify the expression by following steps: - step0: Multiply the terms: \(3x\left(-2x^{2}+3x-5\right)\) - step1: Apply the distributive property: \(3x\left(-2x^{2}\right)+3x\times 3x-3x\times 5\) - step2: Multiply the terms: \(-6x^{3}+9x^{2}-15x\) Expand the expression \( (5 x+1)(5 x-1) \) Simplify the expression by following steps: - step0: Multiply the terms: \(\left(5x+1\right)\left(5x-1\right)\) - step1: Simplify the product: \(\left(5x\right)^{2}-1^{2}\) - step2: Evaluate the power: \(25x^{2}-1\) Expand the expression \( -4 x^{3}(x^{2}+2 x+8) \) Simplify the expression by following steps: - step0: Calculate: \(-4x^{3}\left(x^{2}+2x+8\right)\) - step1: Rewrite the expression: \(-4\left(x^{2}+2x+8\right)x^{3}\) - step2: Rearrange the terms: \(\left(-4x^{2}-8x-32\right)x^{3}\) - step3: Apply the distributive property: \(-4x^{2}\times x^{3}-8x\times x^{3}-32x^{3}\) - step4: Multiply the terms: \(-4x^{5}-8x^{4}-32x^{3}\) Expand the expression \( (x+6)(4 x^{2}-2 x-1) \) Simplify the expression by following steps: - step0: Multiply the terms: \(\left(x+6\right)\left(4x^{2}-2x-1\right)\) - step1: Apply the distributive property: \(x\times 4x^{2}-x\times 2x-x\times 1+6\times 4x^{2}-6\times 2x-6\times 1\) - step2: Multiply the terms: \(4x^{3}-2x^{2}-x+24x^{2}-12x-6\) - step3: Add the terms: \(4x^{3}+22x^{2}-13x-6\) Here are the results of multiplying the given polynomials: 1. **Problem 5:** \[ 3x(-2x^{2}+3x-5) = -6x^{3}+9x^{2}-15x \] 2. **Problem 10:** \[ (-4x+y)(4x+y) = y^{2}-16x^{2} \] 3. **Problem 6:** \[ -4x^{3}(x^{2}+2x+8) = -4x^{5}-8x^{4}-32x^{3} \] 4. **Problem 7:** \[ (4x+6)(2x-1) = 8x^{2}+8x-6 \] 5. **Problem 11:** \[ (2x-7)^{2} = 4x^{2}-28x+49 \] 6. **Problem 12:** \[ (3x+8)^{2} = 9x^{2}+48x+64 \] 7. **Problem B:** \[ (-x+y)(5x-2y) = -5x^{2}+7xy-2y^{2} \] 8. **Problem 13:** \[ (5x+1)(5x-1) = 25x^{2}-1 \] 9. **Problem 14:** \[ (x+6)(4x^{2}-2x-1) = 4x^{3}+22x^{2}-13x-6 \] 10. **Problem 14:** \[ (6x^{2}-7x-5)(x^{2}-5x-8) = 6x^{4}-37x^{3}-18x^{2}+81x+40 \] These results represent the expanded forms of the products of the given polynomials.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Mind Expander

Sure! Let’s dive into the polynomial fun! 1) For \(3x(-2x^2 + 3x - 5)\), distribute \(3x\) to each term: \[ 3x \cdot -2x^2 = -6x^3, \quad 3x \cdot 3x = 9x^2, \quad 3x \cdot -5 = -15x \] So, you get: \[ -6x^3 + 9x^2 - 15x \] 2) For \((-4x + y)(4x + y)\), apply the distributive property (or FOIL method): \[ -4x \cdot 4x = -16x^2, \quad -4x \cdot y = -4xy, \quad y \cdot 4x = 4xy, \quad y \cdot y = y^2 \] Combining like terms gives: \[ -16x^2 + y^2 \] Have fun with the rest of the polynomial multiplication! It's like a math party where all the terms combine in different ways!

Related Questions

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy