Pregunta
upstudy study bank question image url

Muhtiply the following polynomials. \( \begin{array}{ll}\text { 5.) } 3 x\left(-2 x^{2}+3 x-5\right) & \text { 10.) }(-4 x+y)(4 x+y) \\ \text { 6.) }-4 x^{3}\left(x^{2}+2 x+8\right) & \text { 11.) }(2 x-7)^{2} \\ \text { 7.) }(4 x+6)(2 x-1) & \text { 12.) }(3 x+8)^{2} \\ \text { B.) }(-x+y)(5 x-2 y) & \text { 13.) }(x+6)\left(4 x^{2}-2 x-1\right) \\ (5 x+1)(5 x-1) & \text { 14.) }\left(6 x^{2}-7 x-5\right)\left(x^{2}-5 x-8\right)\end{array} \)

Ask by Joseph Joseph. in the United States
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Here are the expanded forms of the given polynomial multiplications: 1. **Problem 5:** \( -6x^{3} + 9x^{2} - 15x \) 2. **Problem 10:** \( y^{2} - 16x^{2} \) 3. **Problem 6:** \( -4x^{5} - 8x^{4} - 32x^{3} \) 4. **Problem 7:** \( 8x^{2} + 8x - 6 \) 5. **Problem 11:** \( 4x^{2} - 28x + 49 \) 6. **Problem 12:** \( 9x^{2} + 48x + 64 \) 7. **Problem B:** \( -5x^{2} + 7xy - 2y^{2} \) 8. **Problem 13:** \( 25x^{2} - 1 \) 9. **Problem 14:** \( 4x^{4} - 37x^{3} - 18x^{2} + 81x + 40 \) These are the simplified results of multiplying the polynomials.

Solución

Simplify the expression by following steps: - step0: Multiply the terms: \(\left(-x+y\right)\left(5x-2y\right)\) - step1: Apply the distributive property: \(-x\times 5x-\left(-x\times 2y\right)+y\times 5x-y\times 2y\) - step2: Multiply the terms: \(-5x^{2}-\left(-2xy\right)+5yx-2y^{2}\) - step3: Remove the parentheses: \(-5x^{2}+2xy+5yx-2y^{2}\) - step4: Add the terms: \(-5x^{2}+7xy-2y^{2}\) Expand the expression \( (4 x+6)(2 x-1) \) Simplify the expression by following steps: - step0: Multiply the terms: \(\left(4x+6\right)\left(2x-1\right)\) - step1: Apply the distributive property: \(4x\times 2x-4x\times 1+6\times 2x-6\times 1\) - step2: Multiply the terms: \(8x^{2}-4x+12x-6\) - step3: Add the terms: \(8x^{2}+8x-6\) Expand the expression \( (6 x^{2}-7 x-5)(x^{2}-5 x-8) \) Simplify the expression by following steps: - step0: Multiply the terms: \(\left(6x^{2}-7x-5\right)\left(x^{2}-5x-8\right)\) - step1: Apply the distributive property: \(6x^{2}\times x^{2}-6x^{2}\times 5x-6x^{2}\times 8-7x\times x^{2}-\left(-7x\times 5x\right)-\left(-7x\times 8\right)-5x^{2}-\left(-5\times 5x\right)-\left(-5\times 8\right)\) - step2: Multiply the terms: \(6x^{4}-30x^{3}-48x^{2}-7x^{3}-\left(-35x^{2}\right)-\left(-56x\right)-5x^{2}-\left(-25x\right)-\left(-40\right)\) - step3: Remove the parentheses: \(6x^{4}-30x^{3}-48x^{2}-7x^{3}+35x^{2}+56x-5x^{2}+25x+40\) - step4: Subtract the terms: \(6x^{4}-37x^{3}-18x^{2}+81x+40\) Expand the expression \( (2 x-7)^{2} \) Simplify the expression by following steps: - step0: Calculate: \(\left(2x-7\right)^{2}\) - step1: Calculate: \(4x^{2}-28x+49\) Expand the expression \( (3 x+8)^{2} \) Simplify the expression by following steps: - step0: Calculate: \(\left(3x+8\right)^{2}\) - step1: Calculate: \(9x^{2}+48x+64\) Expand the expression \( (-4 x+y)(4 x+y) \) Simplify the expression by following steps: - step0: Multiply the terms: \(\left(-4x+y\right)\left(4x+y\right)\) - step1: Reorder the terms: \(\left(y-4x\right)\left(y+4x\right)\) - step2: Simplify the product: \(y^{2}-\left(4x\right)^{2}\) - step3: Evaluate the power: \(y^{2}-16x^{2}\) Expand the expression \( 3 x(-2 x^{2}+3 x-5) \) Simplify the expression by following steps: - step0: Multiply the terms: \(3x\left(-2x^{2}+3x-5\right)\) - step1: Apply the distributive property: \(3x\left(-2x^{2}\right)+3x\times 3x-3x\times 5\) - step2: Multiply the terms: \(-6x^{3}+9x^{2}-15x\) Expand the expression \( (5 x+1)(5 x-1) \) Simplify the expression by following steps: - step0: Multiply the terms: \(\left(5x+1\right)\left(5x-1\right)\) - step1: Simplify the product: \(\left(5x\right)^{2}-1^{2}\) - step2: Evaluate the power: \(25x^{2}-1\) Expand the expression \( -4 x^{3}(x^{2}+2 x+8) \) Simplify the expression by following steps: - step0: Calculate: \(-4x^{3}\left(x^{2}+2x+8\right)\) - step1: Rewrite the expression: \(-4\left(x^{2}+2x+8\right)x^{3}\) - step2: Rearrange the terms: \(\left(-4x^{2}-8x-32\right)x^{3}\) - step3: Apply the distributive property: \(-4x^{2}\times x^{3}-8x\times x^{3}-32x^{3}\) - step4: Multiply the terms: \(-4x^{5}-8x^{4}-32x^{3}\) Expand the expression \( (x+6)(4 x^{2}-2 x-1) \) Simplify the expression by following steps: - step0: Multiply the terms: \(\left(x+6\right)\left(4x^{2}-2x-1\right)\) - step1: Apply the distributive property: \(x\times 4x^{2}-x\times 2x-x\times 1+6\times 4x^{2}-6\times 2x-6\times 1\) - step2: Multiply the terms: \(4x^{3}-2x^{2}-x+24x^{2}-12x-6\) - step3: Add the terms: \(4x^{3}+22x^{2}-13x-6\) Here are the results of multiplying the given polynomials: 1. **Problem 5:** \[ 3x(-2x^{2}+3x-5) = -6x^{3}+9x^{2}-15x \] 2. **Problem 10:** \[ (-4x+y)(4x+y) = y^{2}-16x^{2} \] 3. **Problem 6:** \[ -4x^{3}(x^{2}+2x+8) = -4x^{5}-8x^{4}-32x^{3} \] 4. **Problem 7:** \[ (4x+6)(2x-1) = 8x^{2}+8x-6 \] 5. **Problem 11:** \[ (2x-7)^{2} = 4x^{2}-28x+49 \] 6. **Problem 12:** \[ (3x+8)^{2} = 9x^{2}+48x+64 \] 7. **Problem B:** \[ (-x+y)(5x-2y) = -5x^{2}+7xy-2y^{2} \] 8. **Problem 13:** \[ (5x+1)(5x-1) = 25x^{2}-1 \] 9. **Problem 14:** \[ (x+6)(4x^{2}-2x-1) = 4x^{3}+22x^{2}-13x-6 \] 10. **Problem 14:** \[ (6x^{2}-7x-5)(x^{2}-5x-8) = 6x^{4}-37x^{3}-18x^{2}+81x+40 \] These results represent the expanded forms of the products of the given polynomials.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

Sure! Let’s dive into the polynomial fun! 1) For \(3x(-2x^2 + 3x - 5)\), distribute \(3x\) to each term: \[ 3x \cdot -2x^2 = -6x^3, \quad 3x \cdot 3x = 9x^2, \quad 3x \cdot -5 = -15x \] So, you get: \[ -6x^3 + 9x^2 - 15x \] 2) For \((-4x + y)(4x + y)\), apply the distributive property (or FOIL method): \[ -4x \cdot 4x = -16x^2, \quad -4x \cdot y = -4xy, \quad y \cdot 4x = 4xy, \quad y \cdot y = y^2 \] Combining like terms gives: \[ -16x^2 + y^2 \] Have fun with the rest of the polynomial multiplication! It's like a math party where all the terms combine in different ways!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad