Responder
Here are the expanded forms of the given polynomial multiplications:
1. **Problem 5:** \( -6x^{3} + 9x^{2} - 15x \)
2. **Problem 10:** \( y^{2} - 16x^{2} \)
3. **Problem 6:** \( -4x^{5} - 8x^{4} - 32x^{3} \)
4. **Problem 7:** \( 8x^{2} + 8x - 6 \)
5. **Problem 11:** \( 4x^{2} - 28x + 49 \)
6. **Problem 12:** \( 9x^{2} + 48x + 64 \)
7. **Problem B:** \( -5x^{2} + 7xy - 2y^{2} \)
8. **Problem 13:** \( 25x^{2} - 1 \)
9. **Problem 14:** \( 4x^{4} - 37x^{3} - 18x^{2} + 81x + 40 \)
These are the simplified results of multiplying the polynomials.
Solución
Simplify the expression by following steps:
- step0: Multiply the terms:
\(\left(-x+y\right)\left(5x-2y\right)\)
- step1: Apply the distributive property:
\(-x\times 5x-\left(-x\times 2y\right)+y\times 5x-y\times 2y\)
- step2: Multiply the terms:
\(-5x^{2}-\left(-2xy\right)+5yx-2y^{2}\)
- step3: Remove the parentheses:
\(-5x^{2}+2xy+5yx-2y^{2}\)
- step4: Add the terms:
\(-5x^{2}+7xy-2y^{2}\)
Expand the expression \( (4 x+6)(2 x-1) \)
Simplify the expression by following steps:
- step0: Multiply the terms:
\(\left(4x+6\right)\left(2x-1\right)\)
- step1: Apply the distributive property:
\(4x\times 2x-4x\times 1+6\times 2x-6\times 1\)
- step2: Multiply the terms:
\(8x^{2}-4x+12x-6\)
- step3: Add the terms:
\(8x^{2}+8x-6\)
Expand the expression \( (6 x^{2}-7 x-5)(x^{2}-5 x-8) \)
Simplify the expression by following steps:
- step0: Multiply the terms:
\(\left(6x^{2}-7x-5\right)\left(x^{2}-5x-8\right)\)
- step1: Apply the distributive property:
\(6x^{2}\times x^{2}-6x^{2}\times 5x-6x^{2}\times 8-7x\times x^{2}-\left(-7x\times 5x\right)-\left(-7x\times 8\right)-5x^{2}-\left(-5\times 5x\right)-\left(-5\times 8\right)\)
- step2: Multiply the terms:
\(6x^{4}-30x^{3}-48x^{2}-7x^{3}-\left(-35x^{2}\right)-\left(-56x\right)-5x^{2}-\left(-25x\right)-\left(-40\right)\)
- step3: Remove the parentheses:
\(6x^{4}-30x^{3}-48x^{2}-7x^{3}+35x^{2}+56x-5x^{2}+25x+40\)
- step4: Subtract the terms:
\(6x^{4}-37x^{3}-18x^{2}+81x+40\)
Expand the expression \( (2 x-7)^{2} \)
Simplify the expression by following steps:
- step0: Calculate:
\(\left(2x-7\right)^{2}\)
- step1: Calculate:
\(4x^{2}-28x+49\)
Expand the expression \( (3 x+8)^{2} \)
Simplify the expression by following steps:
- step0: Calculate:
\(\left(3x+8\right)^{2}\)
- step1: Calculate:
\(9x^{2}+48x+64\)
Expand the expression \( (-4 x+y)(4 x+y) \)
Simplify the expression by following steps:
- step0: Multiply the terms:
\(\left(-4x+y\right)\left(4x+y\right)\)
- step1: Reorder the terms:
\(\left(y-4x\right)\left(y+4x\right)\)
- step2: Simplify the product:
\(y^{2}-\left(4x\right)^{2}\)
- step3: Evaluate the power:
\(y^{2}-16x^{2}\)
Expand the expression \( 3 x(-2 x^{2}+3 x-5) \)
Simplify the expression by following steps:
- step0: Multiply the terms:
\(3x\left(-2x^{2}+3x-5\right)\)
- step1: Apply the distributive property:
\(3x\left(-2x^{2}\right)+3x\times 3x-3x\times 5\)
- step2: Multiply the terms:
\(-6x^{3}+9x^{2}-15x\)
Expand the expression \( (5 x+1)(5 x-1) \)
Simplify the expression by following steps:
- step0: Multiply the terms:
\(\left(5x+1\right)\left(5x-1\right)\)
- step1: Simplify the product:
\(\left(5x\right)^{2}-1^{2}\)
- step2: Evaluate the power:
\(25x^{2}-1\)
Expand the expression \( -4 x^{3}(x^{2}+2 x+8) \)
Simplify the expression by following steps:
- step0: Calculate:
\(-4x^{3}\left(x^{2}+2x+8\right)\)
- step1: Rewrite the expression:
\(-4\left(x^{2}+2x+8\right)x^{3}\)
- step2: Rearrange the terms:
\(\left(-4x^{2}-8x-32\right)x^{3}\)
- step3: Apply the distributive property:
\(-4x^{2}\times x^{3}-8x\times x^{3}-32x^{3}\)
- step4: Multiply the terms:
\(-4x^{5}-8x^{4}-32x^{3}\)
Expand the expression \( (x+6)(4 x^{2}-2 x-1) \)
Simplify the expression by following steps:
- step0: Multiply the terms:
\(\left(x+6\right)\left(4x^{2}-2x-1\right)\)
- step1: Apply the distributive property:
\(x\times 4x^{2}-x\times 2x-x\times 1+6\times 4x^{2}-6\times 2x-6\times 1\)
- step2: Multiply the terms:
\(4x^{3}-2x^{2}-x+24x^{2}-12x-6\)
- step3: Add the terms:
\(4x^{3}+22x^{2}-13x-6\)
Here are the results of multiplying the given polynomials:
1. **Problem 5:**
\[
3x(-2x^{2}+3x-5) = -6x^{3}+9x^{2}-15x
\]
2. **Problem 10:**
\[
(-4x+y)(4x+y) = y^{2}-16x^{2}
\]
3. **Problem 6:**
\[
-4x^{3}(x^{2}+2x+8) = -4x^{5}-8x^{4}-32x^{3}
\]
4. **Problem 7:**
\[
(4x+6)(2x-1) = 8x^{2}+8x-6
\]
5. **Problem 11:**
\[
(2x-7)^{2} = 4x^{2}-28x+49
\]
6. **Problem 12:**
\[
(3x+8)^{2} = 9x^{2}+48x+64
\]
7. **Problem B:**
\[
(-x+y)(5x-2y) = -5x^{2}+7xy-2y^{2}
\]
8. **Problem 13:**
\[
(5x+1)(5x-1) = 25x^{2}-1
\]
9. **Problem 14:**
\[
(x+6)(4x^{2}-2x-1) = 4x^{3}+22x^{2}-13x-6
\]
10. **Problem 14:**
\[
(6x^{2}-7x-5)(x^{2}-5x-8) = 6x^{4}-37x^{3}-18x^{2}+81x+40
\]
These results represent the expanded forms of the products of the given polynomials.
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución