Answer
The future value of the ordinary annuity is \$76,046.25.
Solution
To find the future value of an ordinary annuity, we can use the formula:
\[
FV = PMT \times \frac{(1 + r/n)^{nt} - 1}{r/n}
\]
Where:
- \( FV \) = future value of the annuity
- \( PMT \) = payment amount per period
- \( r \) = annual interest rate (as a decimal)
- \( n \) = number of compounding periods per year
- \( t \) = number of years
Given:
- \( PMT = 2250 \)
- \( r = 1.40\% = 0.014 \)
- \( n = 4 \) (since it is compounded quarterly)
- \( t = 8 \)
Now, we can substitute these values into the formula step by step.
1. Calculate \( r/n \):
\[
r/n = \frac{0.014}{4}
\]
2. Calculate \( nt \):
\[
nt = 4 \times 8
\]
3. Calculate \( (1 + r/n)^{nt} \):
\[
(1 + r/n)^{nt} = \left(1 + \frac{0.014}{4}\right)^{32}
\]
4. Finally, substitute everything back into the future value formula.
Let's perform these calculations step by step.
Calculate the value by following steps:
- step0: Calculate:
\(4\times 8\)
- step1: Multiply the numbers:
\(32\)
Calculate or simplify the expression \( (1 + 0.014/4)^(4*8) \).
Calculate the value by following steps:
- step0: Calculate:
\(\left(1+\frac{0.014}{4}\right)^{4\times 8}\)
- step1: Divide the terms:
\(\left(1+\frac{7}{2000}\right)^{4\times 8}\)
- step2: Add the numbers:
\(\left(\frac{2007}{2000}\right)^{4\times 8}\)
- step3: Multiply the numbers:
\(\left(\frac{2007}{2000}\right)^{32}\)
- step4: Use the properties of exponents:
\(\frac{2007^{32}}{2000^{32}}\)
Calculate or simplify the expression \( 0.014/4 \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{0.014}{4}\)
- step1: Convert the expressions:
\(\frac{\frac{7}{500}}{4}\)
- step2: Multiply by the reciprocal:
\(\frac{7}{500}\times \frac{1}{4}\)
- step3: Multiply the fractions:
\(\frac{7}{500\times 4}\)
- step4: Multiply:
\(\frac{7}{2000}\)
Calculate or simplify the expression \( 2250 * ((1 + 0.0035)^(32) - 1) / 0.0035 \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{2250\left(\left(1+0.0035\right)^{32}-1\right)}{0.0035}\)
- step1: Add the numbers:
\(\frac{2250\left(1.0035^{32}-1\right)}{0.0035}\)
- step2: Convert the expressions:
\(\frac{2250\left(\left(\frac{2007}{2000}\right)^{32}-1\right)}{0.0035}\)
- step3: Subtract the numbers:
\(\frac{2250\times \frac{2007^{32}-2000^{32}}{2000^{32}}}{0.0035}\)
- step4: Multiply the numbers:
\(\frac{\frac{9\times 2007^{32}-9\times 2000^{32}}{250^{31}\times 8^{32}}}{0.0035}\)
- step5: Convert the expressions:
\(\frac{\frac{9\times 2007^{32}-9\times 2000^{32}}{250^{31}\times 8^{32}}}{\frac{7}{2000}}\)
- step6: Multiply by the reciprocal:
\(\frac{9\times 2007^{32}-9\times 2000^{32}}{250^{31}\times 8^{32}}\times \frac{2000}{7}\)
- step7: Rewrite the expression:
\(\frac{9\times 2007^{32}-9\times 2000^{32}}{250^{31}\times 8^{32}}\times \frac{250\times 8}{7}\)
- step8: Reduce the numbers:
\(\frac{9\times 2007^{32}-9\times 2000^{32}}{250^{30}\times 8^{32}}\times \frac{8}{7}\)
- step9: Rewrite the expression:
\(\frac{9\times 2007^{32}-9\times 2000^{32}}{2^{30}\times 125^{30}\times 8^{32}}\times \frac{8}{7}\)
- step10: Rewrite the expression:
\(\frac{9\times 2007^{32}-9\times 2000^{32}}{2^{30}\times 125^{30}\times 8^{32}}\times \frac{2^{3}}{7}\)
- step11: Reduce the numbers:
\(\frac{9\times 2007^{32}-9\times 2000^{32}}{2^{27}\times 125^{30}\times 8^{32}}\times \frac{1}{7}\)
- step12: Multiply the fractions:
\(\frac{9\times 2007^{32}-9\times 2000^{32}}{2^{123}\times 125^{30}\times 7}\)
- step13: Multiply:
\(\frac{9\times 2007^{32}-9\times 2000^{32}}{7\times 2^{123}\times 125^{30}}\)
Now that we have completed the calculations, let's summarize the results:
1. The value of \( r/n \) is approximately \( 0.0035 \).
2. The value of \( nt \) is \( 32 \).
3. The value of \( (1 + r/n)^{nt} \) is approximately \( 1.118294 \).
Now, we can substitute these values into the future value formula:
\[
FV = 2250 \times \frac{(1.118294 - 1)}{0.0035}
\]
Calculating this gives us:
\[
FV \approx 2250 \times \frac{0.118294}{0.0035} \approx 2250 \times 33.57085714 \approx 76046.248094
\]
Finally, rounding to the nearest cent, the future value of the ordinary annuity is:
\[
FV \approx \$ 76,046.25
\]
Thus, the future value of the ordinary annuity is \( \$ 76,046.25 \).
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution