Find the future value for the ordinary annuity with the given payment and interest rate. PMT \( =\$ 2,250 ; 1.40 \% \) compounded quarterly for 8 years. The future value of the ordinary annuity is \( \$ \square \). (Do not round until the final answer. Then round to the nearest cent as needed.)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Mind Expander
To find the future value of an ordinary annuity, we can use the formula: \[ FV = PMT \times \frac{(1 + r/n)^{nt} - 1}{(r/n)} \] Where: - \( PMT = 2,250 \) - \( r = 0.014 \) (1.40% as a decimal) - \( n = 4 \) (quarterly compounding) - \( t = 8 \) Plugging in the values: 1. **Calculate \( r/n \)**: \[ \frac{r}{n} = \frac{0.014}{4} = 0.0035 \] 2. **Calculate \( nt \)**: \[ nt = 4 \times 8 = 32 \] 3. **Calculate \( (1 + r/n)^{nt} \)**: \[ (1 + 0.0035)^{32} \approx (1.0035)^{32} \approx 1.121752 \] 4. **Calculate the future value**: \[ FV = 2250 \left( \frac{1.121752 - 1}{0.0035} \right) \] \[ FV = 2250 \left( \frac{0.121752}{0.0035} \right) \] \[ FV = 2250 \times 34.07 \approx 76658.25 \] Therefore, the future value of the ordinary annuity is approximately \( \$ 76,658.25 \).
