Answer
The monthly house payment is approximately $20,649.60.
Solution
To find the monthly house payments necessary to amortize a loan of $191,200 with an interest rate of 10.8% over 20 years, we can use the formula for monthly payments:
\[ M = \frac{P \times r \times (1 + r)^n}{(1 + r)^n - 1} \]
Where:
- \( M \) is the monthly payment
- \( P \) is the principal amount (initial loan amount)
- \( r \) is the monthly interest rate (annual interest rate divided by 12)
- \( n \) is the number of payments (20 years * 12 months/year)
Given:
- Principal amount \( P = \$191,200 \)
- Annual interest rate \( r = 10.8\% \)
- Number of payments \( n = 20 \times 12 = 240 \) months
Let's calculate the monthly payment using the formula.
Calculate the value by following steps:
- step0: Calculate:
\(\frac{191200\times 0.108\left(1+0.108\right)^{240}}{\left(\left(1+0.108\right)^{240}-1\right)}\)
- step1: Remove the parentheses:
\(\frac{191200\times 0.108\left(1+0.108\right)^{240}}{\left(1+0.108\right)^{240}-1}\)
- step2: Add the numbers:
\(\frac{191200\times 0.108\times 1.108^{240}}{\left(1+0.108\right)^{240}-1}\)
- step3: Add the numbers:
\(\frac{191200\times 0.108\times 1.108^{240}}{1.108^{240}-1}\)
- step4: Convert the expressions:
\(\frac{191200\times 0.108\left(\frac{277}{250}\right)^{240}}{1.108^{240}-1}\)
- step5: Convert the expressions:
\(\frac{191200\times 0.108\left(\frac{277}{250}\right)^{240}}{\left(\frac{277}{250}\right)^{240}-1}\)
- step6: Multiply:
\(\frac{\frac{6453\times 277^{240}}{5^{721}\times 2^{236}}}{\left(\frac{277}{250}\right)^{240}-1}\)
- step7: Subtract the numbers:
\(\frac{\frac{6453\times 277^{240}}{5^{721}\times 2^{236}}}{\frac{277^{240}-250^{240}}{250^{240}}}\)
- step8: Multiply by the reciprocal:
\(\frac{6453\times 277^{240}}{5^{721}\times 2^{236}}\times \frac{250^{240}}{277^{240}-250^{240}}\)
- step9: Rewrite the expression:
\(\frac{6453\times 277^{240}}{5^{721}\times 2^{236}}\times \frac{125^{240}\times 2^{240}}{277^{240}-250^{240}}\)
- step10: Rewrite the expression:
\(\frac{6453\times 277^{240}}{5^{721}\times 2^{236}}\times \frac{5^{720}\times 2^{240}}{277^{240}-250^{240}}\)
- step11: Reduce the numbers:
\(\frac{6453\times 277^{240}}{5}\times \frac{2^{4}}{277^{240}-250^{240}}\)
- step12: Multiply the fractions:
\(\frac{6453\times 277^{240}\times 2^{4}}{5\left(277^{240}-250^{240}\right)}\)
- step13: Multiply:
\(\frac{103248\times 277^{240}}{5\times 277^{240}-5\times 250^{240}}\)
The monthly house payment necessary to amortize a loan of $191,200 with an interest rate of 10.8% over 20 years is approximately $20,649.60.
Therefore, the payment size is $20,649.60.
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution