Pregunta
upstudy study bank question image url

Find the monthly house payments necessary to amortize a \( 10.8 \% \) loan of \( \$ 191,200 \) over 20 years. The payment size is \( \$ \square \). (Round to the nearest cent.)

Ask by Wells Carrillo. in the United States
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The monthly house payment is approximately $20,649.60.

Solución

To find the monthly house payments necessary to amortize a loan of $191,200 with an interest rate of 10.8% over 20 years, we can use the formula for monthly payments: \[ M = \frac{P \times r \times (1 + r)^n}{(1 + r)^n - 1} \] Where: - \( M \) is the monthly payment - \( P \) is the principal amount (initial loan amount) - \( r \) is the monthly interest rate (annual interest rate divided by 12) - \( n \) is the number of payments (20 years * 12 months/year) Given: - Principal amount \( P = \$191,200 \) - Annual interest rate \( r = 10.8\% \) - Number of payments \( n = 20 \times 12 = 240 \) months Let's calculate the monthly payment using the formula. Calculate the value by following steps: - step0: Calculate: \(\frac{191200\times 0.108\left(1+0.108\right)^{240}}{\left(\left(1+0.108\right)^{240}-1\right)}\) - step1: Remove the parentheses: \(\frac{191200\times 0.108\left(1+0.108\right)^{240}}{\left(1+0.108\right)^{240}-1}\) - step2: Add the numbers: \(\frac{191200\times 0.108\times 1.108^{240}}{\left(1+0.108\right)^{240}-1}\) - step3: Add the numbers: \(\frac{191200\times 0.108\times 1.108^{240}}{1.108^{240}-1}\) - step4: Convert the expressions: \(\frac{191200\times 0.108\left(\frac{277}{250}\right)^{240}}{1.108^{240}-1}\) - step5: Convert the expressions: \(\frac{191200\times 0.108\left(\frac{277}{250}\right)^{240}}{\left(\frac{277}{250}\right)^{240}-1}\) - step6: Multiply: \(\frac{\frac{6453\times 277^{240}}{5^{721}\times 2^{236}}}{\left(\frac{277}{250}\right)^{240}-1}\) - step7: Subtract the numbers: \(\frac{\frac{6453\times 277^{240}}{5^{721}\times 2^{236}}}{\frac{277^{240}-250^{240}}{250^{240}}}\) - step8: Multiply by the reciprocal: \(\frac{6453\times 277^{240}}{5^{721}\times 2^{236}}\times \frac{250^{240}}{277^{240}-250^{240}}\) - step9: Rewrite the expression: \(\frac{6453\times 277^{240}}{5^{721}\times 2^{236}}\times \frac{125^{240}\times 2^{240}}{277^{240}-250^{240}}\) - step10: Rewrite the expression: \(\frac{6453\times 277^{240}}{5^{721}\times 2^{236}}\times \frac{5^{720}\times 2^{240}}{277^{240}-250^{240}}\) - step11: Reduce the numbers: \(\frac{6453\times 277^{240}}{5}\times \frac{2^{4}}{277^{240}-250^{240}}\) - step12: Multiply the fractions: \(\frac{6453\times 277^{240}\times 2^{4}}{5\left(277^{240}-250^{240}\right)}\) - step13: Multiply: \(\frac{103248\times 277^{240}}{5\times 277^{240}-5\times 250^{240}}\) The monthly house payment necessary to amortize a loan of $191,200 with an interest rate of 10.8% over 20 years is approximately $20,649.60. Therefore, the payment size is $20,649.60.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To calculate the monthly house payments necessary to amortize a loan, we can use the formula for monthly payments: \[ M = P \frac{r(1+r)^n}{(1+r)^n - 1} \] Where: - \( M \) is the total monthly mortgage payment. - \( P \) is the principal loan amount (\$191,200). - \( r \) is the monthly interest rate (annual rate divided by 12). - \( n \) is the number of payments (loan term in months). 1. **Calculate Monthly Interest Rate**: \[ r = \frac{10.8\%}{12} = \frac{0.108}{12} = 0.009 \] 2. **Calculate Total Number of Payments**: \[ n = 20 \times 12 = 240 \text{ months} \] 3. **Substitute into the Formula**: \[ M = 191200 \cdot \frac{0.009(1+0.009)^{240}}{(1+0.009)^{240} - 1} \] 4. **Calculate**: - First calculate \((1+0.009)^{240} ≈ 6.1506\). - Now substitutethe calculated values into the equation: \[ M ≈ 191200 \cdot \frac{0.009 \cdot 6.1506}{6.1506 - 1} ≈ 191200 \cdot \frac{0.0553554}{5.1506} \] \[ M ≈ 191200 \cdot 0.010747 ≈ 2055.04 \] Thus, the monthly house payment necessary to amortize the loan is approximately **\$2055.04**.

Latest Arithmetic Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad