EXAMPLE 3 If \( m \angle 6=142^{\circ} \), find each measure. Glve your reasoning. a. \( m \angle 1= \) b. \( m \angle 2= \) c. \( m \angle 3= \) d. \( m \angle 4= \) e. \( m \angle 5= \) f. \( m \angle 7= \) g. \( m \angle 8= \)
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


The Deep Dive
To find the measures of the angles based on \( m \angle 6 = 142^\circ \), let's assume these angles are positioned in a typical transversal scenario where \( m \angle 6 \) is an exterior angle interacting with other interior angles. a. \( m \angle 1 = 38^\circ \) (since \( m \angle 1 = 180^\circ - m \angle 6 \)) b. \( m \angle 2 = 142^\circ \) (because \( m \angle 2 \) is vertically opposite to \( m \angle 6 \)) c. \( m \angle 3 = 38^\circ \) (since \( m \angle 3 \) is corresponding to \( m \angle 1 \)) d. \( m \angle 4 = 142^\circ \) (because \( m \angle 4 \) is vertically opposite to \( m \angle 2 \)) e. \( m \angle 5 = 38^\circ \) (as \( m \angle 5 \) is corresponding to \( m \angle 3 \)) f. \( m \angle 7 = 142^\circ \) (since \( m \angle 7 \) is vertically opposite to \( m \angle 6 \)) g. \( m \angle 8 = 38^\circ \) (as \( m \angle 8 \) corresponds to \( m \angle 1 \)) Thus, the angles can be summarized as follows: - \( m \angle 1 = 38^\circ \) - \( m \angle 2 = 142^\circ \) - \( m \angle 3 = 38^\circ \) - \( m \angle 4 = 142^\circ \) - \( m \angle 5 = 38^\circ \) - \( m \angle 7 = 142^\circ \) - \( m \angle 8 = 38^\circ \)