Question
upstudy study bank question image url

1. \( \int \operatorname{sen} 2 x \operatorname{sen} 3 x d x \) 2. \( \int \operatorname{sen} x \cos 3 x d x \)

Ask by Christensen Ruiz. in Mexico
Feb 19,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

Aquí están las soluciones a las integrales: 1. \( \int \sin(2x) \sin(3x) \, dx = \frac{1}{2}\sin(x) - \frac{1}{10}\sin(5x) + C \) 2. \( \int \sin(x) \cos(3x) \, dx = -\frac{1}{8}\cos(4x) + \frac{1}{4}\cos(2x) + C \) Si necesitas más ayuda, pregunta.

Solution

Evaluate the integral by following steps: - step0: Evaluate using formulas and rules: \(\int \sin\left(2x\right)\sin\left(3x\right) dx\) - step1: Evaluate the integral: \(\frac{\sin\left(\left(2-3\right)x\right)}{2\left(2-3\right)}-\frac{\sin\left(\left(2+3\right)x\right)}{2\left(2+3\right)}\) - step2: Subtract the numbers: \(\frac{\sin\left(-x\right)}{2\left(2-3\right)}-\frac{\sin\left(\left(2+3\right)x\right)}{2\left(2+3\right)}\) - step3: Add the numbers: \(\frac{\sin\left(-x\right)}{2\left(2-3\right)}-\frac{\sin\left(5x\right)}{2\left(2+3\right)}\) - step4: Subtract the numbers: \(\frac{\sin\left(-x\right)}{2\left(-1\right)}-\frac{\sin\left(5x\right)}{2\left(2+3\right)}\) - step5: Add the numbers: \(\frac{\sin\left(-x\right)}{2\left(-1\right)}-\frac{\sin\left(5x\right)}{2\times 5}\) - step6: Transform the expression: \(\frac{-\sin\left(x\right)}{2\left(-1\right)}-\frac{\sin\left(5x\right)}{2\times 5}\) - step7: Simplify: \(\frac{-\sin\left(x\right)}{-2}-\frac{\sin\left(5x\right)}{2\times 5}\) - step8: Multiply the numbers: \(\frac{-\sin\left(x\right)}{-2}-\frac{\sin\left(5x\right)}{10}\) - step9: Simplify the expression: \(\frac{1}{2}\sin\left(x\right)-\frac{\sin\left(5x\right)}{10}\) - step10: Simplify the expression: \(\frac{1}{2}\sin\left(x\right)-\frac{1}{10}\sin\left(5x\right)\) - step11: Add the constant of integral C: \(\frac{1}{2}\sin\left(x\right)-\frac{1}{10}\sin\left(5x\right) + C, C \in \mathbb{R}\) Calculate the integral \( \int \sin(x) \cos(3 x) \, dx \). Evaluate the integral by following steps: - step0: Evaluate using formulas and rules: \(\int \sin\left(x\right)\cos\left(3x\right) dx\) - step1: Evaluate the integral: \(-\frac{\cos\left(\left(1+3\right)x\right)}{2\left(1+3\right)}-\frac{\cos\left(\left(1-3\right)x\right)}{2\left(1-3\right)}\) - step2: Add the numbers: \(-\frac{\cos\left(4x\right)}{2\left(1+3\right)}-\frac{\cos\left(\left(1-3\right)x\right)}{2\left(1-3\right)}\) - step3: Subtract the numbers: \(-\frac{\cos\left(4x\right)}{2\left(1+3\right)}-\frac{\cos\left(-2x\right)}{2\left(1-3\right)}\) - step4: Add the numbers: \(-\frac{\cos\left(4x\right)}{2\times 4}-\frac{\cos\left(-2x\right)}{2\left(1-3\right)}\) - step5: Subtract the numbers: \(-\frac{\cos\left(4x\right)}{2\times 4}-\frac{\cos\left(-2x\right)}{2\left(-2\right)}\) - step6: Multiply the numbers: \(-\frac{\cos\left(4x\right)}{8}-\frac{\cos\left(-2x\right)}{2\left(-2\right)}\) - step7: Transform the expression: \(-\frac{\cos\left(4x\right)}{8}-\frac{\cos\left(2x\right)}{2\left(-2\right)}\) - step8: Multiply the numbers: \(-\frac{\cos\left(4x\right)}{8}-\frac{\cos\left(2x\right)}{-4}\) - step9: Simplify the expression: \(-\frac{1}{8}\cos\left(4x\right)-\frac{\cos\left(2x\right)}{-4}\) - step10: Simplify the expression: \(-\frac{1}{8}\cos\left(4x\right)-\left(-\frac{1}{4}\cos\left(2x\right)\right)\) - step11: Calculate: \(-\frac{1}{8}\cos\left(4x\right)+\frac{1}{4}\cos\left(2x\right)\) - step12: Add the constant of integral C: \(-\frac{1}{8}\cos\left(4x\right)+\frac{1}{4}\cos\left(2x\right) + C, C \in \mathbb{R}\) Aquí están las soluciones a las integrales solicitadas: 1. Para la integral \( \int \sin(2x) \sin(3x) \, dx \): \[ \int \sin(2x) \sin(3x) \, dx = \frac{1}{2}\sin(x) - \frac{1}{10}\sin(5x) + C, \quad C \in \mathbb{R} \] 2. Para la integral \( \int \sin(x) \cos(3x) \, dx \): \[ \int \sin(x) \cos(3x) \, dx = -\frac{1}{8}\cos(4x) + \frac{1}{4}\cos(2x) + C, \quad C \in \mathbb{R} \] Si necesitas más ayuda o explicaciones sobre los pasos, no dudes en preguntar.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

The Deep Dive

Para resolver la integral \( \int \operatorname{sen} 2 x \operatorname{sen} 3 x d x \), podemos utilizar una identidad de producto a suma: \( \operatorname{sen} A \operatorname{sen} B = \frac{1}{2} [\operatorname{cos}(A-B) - \operatorname{cos}(A+B)] \). Así que podemos reescribir nuestra integral y simplificarla. Para la integral \( \int \operatorname{sen} x \cos 3 x d x \), es útil aplicar la identidad de producto a suma: \( \operatorname{sen} A \cos B = \frac{1}{2} [\operatorname{sen}(A+B) + \operatorname{sen}(A-B)] \). Esto te permitirá transformar la integral en una forma más fácil de manejar.

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy