Answer
Aquí están las soluciones a las integrales:
1. \( \int \sin(2x) \sin(3x) \, dx = \frac{1}{2}\sin(x) - \frac{1}{10}\sin(5x) + C \)
2. \( \int \sin(x) \cos(3x) \, dx = -\frac{1}{8}\cos(4x) + \frac{1}{4}\cos(2x) + C \)
Si necesitas más ayuda, pregunta.
Solution
Evaluate the integral by following steps:
- step0: Evaluate using formulas and rules:
\(\int \sin\left(2x\right)\sin\left(3x\right) dx\)
- step1: Evaluate the integral:
\(\frac{\sin\left(\left(2-3\right)x\right)}{2\left(2-3\right)}-\frac{\sin\left(\left(2+3\right)x\right)}{2\left(2+3\right)}\)
- step2: Subtract the numbers:
\(\frac{\sin\left(-x\right)}{2\left(2-3\right)}-\frac{\sin\left(\left(2+3\right)x\right)}{2\left(2+3\right)}\)
- step3: Add the numbers:
\(\frac{\sin\left(-x\right)}{2\left(2-3\right)}-\frac{\sin\left(5x\right)}{2\left(2+3\right)}\)
- step4: Subtract the numbers:
\(\frac{\sin\left(-x\right)}{2\left(-1\right)}-\frac{\sin\left(5x\right)}{2\left(2+3\right)}\)
- step5: Add the numbers:
\(\frac{\sin\left(-x\right)}{2\left(-1\right)}-\frac{\sin\left(5x\right)}{2\times 5}\)
- step6: Transform the expression:
\(\frac{-\sin\left(x\right)}{2\left(-1\right)}-\frac{\sin\left(5x\right)}{2\times 5}\)
- step7: Simplify:
\(\frac{-\sin\left(x\right)}{-2}-\frac{\sin\left(5x\right)}{2\times 5}\)
- step8: Multiply the numbers:
\(\frac{-\sin\left(x\right)}{-2}-\frac{\sin\left(5x\right)}{10}\)
- step9: Simplify the expression:
\(\frac{1}{2}\sin\left(x\right)-\frac{\sin\left(5x\right)}{10}\)
- step10: Simplify the expression:
\(\frac{1}{2}\sin\left(x\right)-\frac{1}{10}\sin\left(5x\right)\)
- step11: Add the constant of integral C:
\(\frac{1}{2}\sin\left(x\right)-\frac{1}{10}\sin\left(5x\right) + C, C \in \mathbb{R}\)
Calculate the integral \( \int \sin(x) \cos(3 x) \, dx \).
Evaluate the integral by following steps:
- step0: Evaluate using formulas and rules:
\(\int \sin\left(x\right)\cos\left(3x\right) dx\)
- step1: Evaluate the integral:
\(-\frac{\cos\left(\left(1+3\right)x\right)}{2\left(1+3\right)}-\frac{\cos\left(\left(1-3\right)x\right)}{2\left(1-3\right)}\)
- step2: Add the numbers:
\(-\frac{\cos\left(4x\right)}{2\left(1+3\right)}-\frac{\cos\left(\left(1-3\right)x\right)}{2\left(1-3\right)}\)
- step3: Subtract the numbers:
\(-\frac{\cos\left(4x\right)}{2\left(1+3\right)}-\frac{\cos\left(-2x\right)}{2\left(1-3\right)}\)
- step4: Add the numbers:
\(-\frac{\cos\left(4x\right)}{2\times 4}-\frac{\cos\left(-2x\right)}{2\left(1-3\right)}\)
- step5: Subtract the numbers:
\(-\frac{\cos\left(4x\right)}{2\times 4}-\frac{\cos\left(-2x\right)}{2\left(-2\right)}\)
- step6: Multiply the numbers:
\(-\frac{\cos\left(4x\right)}{8}-\frac{\cos\left(-2x\right)}{2\left(-2\right)}\)
- step7: Transform the expression:
\(-\frac{\cos\left(4x\right)}{8}-\frac{\cos\left(2x\right)}{2\left(-2\right)}\)
- step8: Multiply the numbers:
\(-\frac{\cos\left(4x\right)}{8}-\frac{\cos\left(2x\right)}{-4}\)
- step9: Simplify the expression:
\(-\frac{1}{8}\cos\left(4x\right)-\frac{\cos\left(2x\right)}{-4}\)
- step10: Simplify the expression:
\(-\frac{1}{8}\cos\left(4x\right)-\left(-\frac{1}{4}\cos\left(2x\right)\right)\)
- step11: Calculate:
\(-\frac{1}{8}\cos\left(4x\right)+\frac{1}{4}\cos\left(2x\right)\)
- step12: Add the constant of integral C:
\(-\frac{1}{8}\cos\left(4x\right)+\frac{1}{4}\cos\left(2x\right) + C, C \in \mathbb{R}\)
Aquí están las soluciones a las integrales solicitadas:
1. Para la integral \( \int \sin(2x) \sin(3x) \, dx \):
\[
\int \sin(2x) \sin(3x) \, dx = \frac{1}{2}\sin(x) - \frac{1}{10}\sin(5x) + C, \quad C \in \mathbb{R}
\]
2. Para la integral \( \int \sin(x) \cos(3x) \, dx \):
\[
\int \sin(x) \cos(3x) \, dx = -\frac{1}{8}\cos(4x) + \frac{1}{4}\cos(2x) + C, \quad C \in \mathbb{R}
\]
Si necesitas más ayuda o explicaciones sobre los pasos, no dudes en preguntar.
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution