Answer
The solutions are:
1. \( x = 1 \)
2. \( x = 7 \)
3. \( x = -3 \)
4. \( x = -3 \) or \( x = -1 \)
Solution
Solve the equation \( \sqrt{2x^{2}-x-1}+1=x \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(\sqrt{2x^{2}-x-1}+1=x\)
- step1: Find the domain:
\(\sqrt{2x^{2}-x-1}+1=x ,x \in \left(-\infty,-\frac{1}{2}\right]\cup \left[1,+\infty\right)\)
- step2: Move the constant to the right-hand side:
\(\sqrt{2x^{2}-x-1}=x-1\)
- step3: Evaluate:
\(\sqrt{2x^{2}-x-1}=x-1,x-1\geq 0\)
- step4: Evaluate:
\(\sqrt{2x^{2}-x-1}=x-1,x\geq 1\)
- step5: Solve the equation:
\(\begin{align}&x=1\\&x=-2\end{align},x\geq 1\)
- step6: Find the intersection:
\(x=1\)
- step7: Check if the solution is in the defined range:
\(x=1,x \in \left(-\infty,-\frac{1}{2}\right]\cup \left[1,+\infty\right)\)
- step8: Find the intersection:
\(x=1\)
- step9: Check the solution:
\(x=1\)
Solve the equation \( \sqrt{x+2}-x+4=0 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(\sqrt{x+2}-x+4=0\)
- step1: Find the domain:
\(\sqrt{x+2}-x+4=0,x\geq -2\)
- step2: Move the expression to the right-hand side:
\(\sqrt{x+2}=x-4\)
- step3: Evaluate:
\(\sqrt{x+2}=x-4,x-4\geq 0\)
- step4: Evaluate:
\(\sqrt{x+2}=x-4,x\geq 4\)
- step5: Solve the equation:
\(\begin{align}&x=7\\&x=2\end{align},x\geq 4\)
- step6: Find the intersection:
\(x=7\)
- step7: Check if the solution is in the defined range:
\(x=7,x\geq -2\)
- step8: Find the intersection:
\(x=7\)
- step9: Check the solution:
\(x=7\)
Solve the equation \( 6=\\sqrt{x+12}-x \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(6=\sqrt{x+12}-x\)
- step1: Find the domain:
\(6=\sqrt{x+12}-x,x\geq -12\)
- step2: Swap the sides:
\(\sqrt{x+12}-x=6\)
- step3: Move the variable to the right-hand side:
\(\sqrt{x+12}=6+x\)
- step4: Evaluate:
\(\sqrt{x+12}=6+x,6+x\geq 0\)
- step5: Evaluate:
\(\sqrt{x+12}=6+x,x\geq -6\)
- step6: Solve the equation:
\(\begin{align}&x=-3\\&x=-8\end{align},x\geq -6\)
- step7: Find the intersection:
\(x=-3\)
- step8: Check if the solution is in the defined range:
\(x=-3,x\geq -12\)
- step9: Find the intersection:
\(x=-3\)
- step10: Check the solution:
\(x=-3\)
Solve the equation \( x+\\sqrt{-4x-3}=0 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(x+\sqrt{-4x-3}=0\)
- step1: Find the domain:
\(x+\sqrt{-4x-3}=0,x\leq -\frac{3}{4}\)
- step2: Move the variable to the right-hand side:
\(\sqrt{-4x-3}=-x\)
- step3: Evaluate:
\(\sqrt{-4x-3}=-x,-x\geq 0\)
- step4: Evaluate:
\(\sqrt{-4x-3}=-x,x\leq 0\)
- step5: Solve the equation:
\(\begin{align}&x=-1\\&x=-3\end{align},x\leq 0\)
- step6: Find the intersection:
\(\begin{align}&x=-1\\&x=-3\end{align}\)
- step7: Check if the solution is in the defined range:
\(\begin{align}&x=-1\\&x=-3\end{align},x\leq -\frac{3}{4}\)
- step8: Find the intersection:
\(\begin{align}&x=-1\\&x=-3\end{align}\)
- step9: Check the solution:
\(\begin{align}&x=-1\\&x=-3\end{align}\)
- step10: Rewrite:
\(x_{1}=-3,x_{2}=-1\)
The solutions to the given equations are:
1. \( x = 1 \)
2. \( x = 7 \)
3. \( x = -3 \)
4. \( x = -3 \) or \( x = -1 \)
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution