Question
upstudy study bank question image url

3. Solve \( \triangle \mathrm{ABC} \) if (a) \( \angle \mathrm{B}=60^{\circ}, \angle \mathrm{A}=30^{\circ} \) and \( \mathrm{c}=40 \) (b) \( \angle \mathrm{A}=60^{\circ}, \angle B=30^{\circ} \) and \( B C=5 \sqrt{3} \)

Ask by Harper Lang. in Nepal
Feb 14,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

Triangle (a): - Angle A: 30° - Angle B: 60° - Angle C: 90° - Side a: 20 - Side b: 20√3 - Side c: 40 Triangle (b): - Angle A: 60° - Angle B: 30° - Angle C: 90° - Side a: 5√3 - Side b: 5 - Side c: 10

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Answered by UpStudy AI and reviewed by a Professional Tutor

The Deep Dive

To solve the triangles, we can employ the Law of Sines and other trigonometric principles. For part (a): Given \( \angle B = 60^\circ \), \( \angle A = 30^\circ \), and \( c = 40 \), we first find \( \angle C \): \[ \angle C = 180^\circ - \angle A - \angle B = 180^\circ - 30^\circ - 60^\circ = 90^\circ. \] Now we can find \( a \) and \( b \) using the Law of Sines: \[ \frac{a}{\sin A} = \frac{c}{\sin C}, \quad \frac{b}{\sin B} = \frac{c}{\sin C}. \] Thus: \[ \frac{a}{\sin 30^\circ} = \frac{40}{\sin 90^\circ} \implies a = 40 \cdot \frac{1}{2} = 20, \] \[ \frac{b}{\sin 60^\circ} = \frac{40}{\sin 90^\circ} \implies b = 40 \cdot \frac{\sqrt{3}}{2} \approx 34.64. \] So, the sides are \( a = 20 \), \( b \approx 34.64 \), and \( c = 40 \). For part (b): Given \( \angle A = 60^\circ \), \( \angle B = 30^\circ \), and \( BC = 5\sqrt{3} \). First, calculate \( \angle C \): \[ \angle C = 180^\circ - 60^\circ - 30^\circ = 90^\circ. \] Then using the Law of Sines: \[ \frac{a}{\sin A} = \frac{BC}{\sin C} \implies a = 5\sqrt{3} \cdot \frac{\sqrt{3}}{2} = \frac{15}{2} = 7.5, \] and \[ \frac{b}{\sin B} = \frac{BC}{\sin C} \implies b = 5\sqrt{3} \cdot \frac{1}{2} = \frac{5\sqrt{3}}{2} \approx 4.33. \] So, the sides are \( a = 7.5 \), \( b \approx 4.33 \), and \( BC = 5\sqrt{3} \). Happy triangulation!

Related Questions

8. Simplify without using a calculator. (8.1) \( \frac{\sin \left(180^{\circ}-x\right) \cdot \tan \left(360^{\circ}-x\right)}{\cos \left(80^{\circ}-x\right)} \times \frac{\cos \left(-180^{\circ}-x\right)}{\cos \left(360^{\circ}+x\right) \sin \left(360^{\circ}-x\right)} \) \( 8.2 \frac{\cos 135^{\circ} \sin 160^{\circ}}{\sin 225^{\circ} \cos 70^{\circ}} \) (8.3) \( \frac{\sin (-\theta)+\cos 120^{\circ}+\tan \left(-180^{\circ}-\theta\right)}{\sin ^{2} 225^{\circ}-\tan (-\theta)-\cos \left(90^{\circ}+\theta\right)} \) B.4 \( 4^{x} \frac{\sin 247^{\circ} \cdot \tan 23^{\circ} \cdot \cos 113^{\circ}}{\sin \left(-157^{\circ}\right)} \) (8.5) \( \frac{3 \cos 150^{\circ} \cdot \sin 270^{\circ}}{\tan \left(-45^{\circ}\right) \cdot \cos 600^{\circ}} \) 8.6) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}+x\right)}{\sin (-x)}-\sin y \cdot \cos \left(90^{\circ}-y\right) \) \( 8.7 \frac{\tan 30^{\circ} \cdot \sin 60^{\circ} \cdot \cos 25^{\circ}}{\cos 135^{\circ} \cdot \sin \left(-45^{\circ}\right) \cdot \sin 65^{\circ}} \) 6.8) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}-x\right)}{\cos \left(90^{\circ}+x\right)}-\frac{\cos \left(180^{\circ}-x\right)}{\sin \left(90^{\circ}+x\right)} \) \( 8.9 \frac{\sin 189^{\circ}}{\tan 549^{\circ}}-\frac{\cos ^{2}\left(-9^{\circ}\right)}{\sin 99^{\circ}} \) Solving trigonometric equations (no calculators) (1.) If \( \sin \mathrm{A}=\frac{-3}{5} \) and \( 0^{\circ}<\mathrm{A}<270^{\circ} \) determine the value of: \( 1.1 \cos A \) \( 1.2 \tan A \). (2.) If \( -5 \tan \theta-3=0 \) and \( \sin \theta<0 \), determine: \( 2.1 \sin ^{2} \theta^{\circ} \) \( 2.25 \cos \theta \) \( 2.3 \quad 1-\cos ^{2} \theta \) 3. If \( 13 \cos \theta+12=0 \) and \( 180^{\circ}<\theta<360^{\circ} \), evaluate: \( 3.2 \tan \theta \) \( 3.1 \sin \theta \cos \theta \) \( 3.3 \sin ^{2} \theta+\cos ^{2} \theta \). (4.) If \( 3 \tan \theta-2=0 \) and \( \theta \in\left[90^{\circ} ; 360^{\circ}\right] \), determine, the value of \( \sqrt{13}(\sin \theta-\cos \theta \) (5.) If \( \cos 52^{\circ}=k \) as illustrated in the diagram, determine each of the following i
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy