Esercizio 2. Calcolare il limite: \[ \lim _{x \rightarrow 0} \frac{e^{x}-\sqrt{(x+1)}}{\lg \left[\tan \left(e^{x}-1\right)+1\right]+\sin ^{2} x} \]
Upstudy AI Solution
Answer
Solution

Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.

Answered by UpStudy AI and reviewed by a Professional Tutor
Extra Insights
Per calcolare il limite \[ \lim _{x \rightarrow 0} \frac{e^{x}-\sqrt{(x+1)}}{\lg \left[\tan \left(e^{x}-1\right)+1\right]+\sin ^{2} x}, \] iniziamo a esaminare il numeratore e il denominatore separatamente quando \( x \to 0 \). **Numeratore:** 1. \( e^{x} = 1 + x + \frac{x^2}{2} + o(x^2) \) 2. \( \sqrt{x+1} = \sqrt{1+x} = 1 + \frac{x}{2} - \frac{x^2}{8} + o(x^2) \) Quindi: \[ e^{x} - \sqrt{x+1} = \left(1 + x + \frac{x^2}{2} + o(x^2)\right) - \left(1 + \frac{x}{2} - \frac{x^2}{8} + o(x^2)\right) = \left(x - \frac{x}{2}\right) + \left(\frac{x^2}{2} + \frac{x^2}{8}\right) + o(x^2) = \frac{x}{2} + \left(\frac{4}{8} + \frac{1}{8}\right)x^2 + o(x^2) = \frac{x}{2} + \frac{5}{8}x^2 + o(x^2) \] Così, il numeratore tende a \( \frac{x}{2} \). **Denominatore:** 1. Per \( \tan(e^{x}-1) = \tan(x + o(x)) \approx x + o(x) \) (poiché \( \tan(t) \approx t \) per \( t \to 0 \)). 2. Quindi \( \tan(e^{x}-1) + 1 \approx x + o(x) + 1 = 1 + x + o(x) \). 3. Applicando il logaritmo: \( \lg(1 + x + o(x)) \approx \frac{x}{\ln(10)} \) per \( x \to 0 \). 4. \( \sin^{2}(x) \approx x^2 \) poiché \( \sin(x) \approx x \) per \( x \to 0 \). Il denominatore quindi diventa \[ \lg(1 + x + o(x)) + \sin^{2}(x) \approx \frac{x}{\ln(10)} + x^2. \] Ora, considerando il limite: \[ \lim_{x \to 0} \frac{\frac{x}{2}}{\frac{x}{\ln(10)} + x^2} = \lim_{x \to 0} \frac{\frac{1}{2}}{\frac{1}{\ln(10)} + x} = \frac{1}{2} \cdot \frac{1}{\frac{1}{\ln(10)}} = \frac{\ln(10)}{2}. \] Pertanto, il limite finale è \[ \boxed{\frac{\ln(10)}{2}}. \]