Find \( f+g, f-g, f g \) and \( \frac{f}{g} \). Determine the domain for each function. \( f(x)=\frac{3 x+8}{x^{2}-81}, g(x)=\frac{2 x-1}{x^{2}-81} \) A. The domain of \( f+g \) is \( (-\infty,-9) \cup(-9,9) \cup(9, \infty) \) (Type your answer in interval notation.) B. The domain of \( f+g \) is \( \{\quad \). (Use a comma to separate answers as needed.) C. The domain of \( f+g \) is \( \varnothing \). What is the domain of \( f-g \) ? ( \( f-g)(x)=\frac{1}{x-9} \) (Simplify your answer.) The domain of \( f-g \) is \( (-\infty,-9) \cup(-9,9) \cup(9, \infty) \). (Type your answer in interval notation.) B. The domain of \( f-g \) is \( \{ \). (Use a comma to separate answers as needed.) C. The domain of \( f-g \) is \( \varnothing \). (fg)(x) \( =\square \) (Simplify your answer.)
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


Beyond the Answer
Let's start by finding \( f + g \), \( f - g \), \( fg \), and \( \frac{f}{g} \) for the functions \( f(x) = \frac{3x + 8}{x^2 - 81} \) and \( g(x) = \frac{2x - 1}{x^2 - 81} \). **1. Finding \( f + g \):** \[ f + g = \frac{3x + 8}{x^2 - 81} + \frac{2x - 1}{x^2 - 81} = \frac{(3x + 8) + (2x - 1)}{x^2 - 81} = \frac{5x + 7}{x^2 - 81} \] **2. Finding \( f - g \):** \[ f - g = \frac{3x + 8}{x^2 - 81} - \frac{2x - 1}{x^2 - 81} = \frac{(3x + 8) - (2x - 1)}{x^2 - 81} = \frac{x + 9}{x^2 - 81} \] **3. Finding \( fg \):** \[ fg = \frac{3x + 8}{x^2 - 81} \cdot \frac{2x - 1}{x^2 - 81} = \frac{(3x + 8)(2x - 1)}{(x^2 - 81)^2} \] **4. Finding \( \frac{f}{g} \):** \[ \frac{f}{g} = \frac{\frac{3x + 8}{x^2 - 81}}{\frac{2x - 1}{x^2 - 81}} = \frac{3x + 8}{2x - 1} \] Now, to determine the domain of each function: Both \( f(x) \) and \( g(x) \) have the denominator \( x^2 - 81 \), which can be factored as \( (x - 9)(x + 9) \). Thus, the function is undefined at \( x = 9 \) and \( x = -9 \). Therefore, the domains for the functions are: - \( f+g \): \( (-\infty, -9) \cup (-9, 9) \cup (9, \infty) \) - \( f-g \): \( (-\infty, -9) \cup (-9, 9) \cup (9, \infty) \) - \( fg \): \( (-\infty, -9) \cup (-9, 9) \cup (9, \infty) \) - \( \frac{f}{g} \): \( (-\infty, -9) \cup (-9, 9) \cup (9, \infty) \) Thus, the answer to the domains for each function in interval notation is: - The domain of \( f+g \) is \( (-\infty, -9) \cup (-9, 9) \cup (9, \infty) \). - The domain of \( f-g \) is \( (-\infty, -9) \cup (-9, 9) \cup (9, \infty) \). - The domain for \( fg \) is \( (-\infty, -9) \cup (-9, 9) \cup (9, \infty) \). - The domain for \( \frac{f}{g} \) is \( (-\infty, -9) \cup (-9, 9) \cup (9, \infty) \). This means domains in set notation would be \( \{ x | x \neq -9, x \neq 9 \} \) for \( f+g \) and \( f-g \).