Question
upstudy study bank question image url

Find \( f+g, f-g, f g \) and \( \frac{f}{g} \). Determine the domain for each function. \( f(x)=\frac{3 x+8}{x^{2}-81}, g(x)=\frac{2 x-1}{x^{2}-81} \) A. The domain of \( f+g \) is \( (-\infty,-9) \cup(-9,9) \cup(9, \infty) \) (Type your answer in interval notation.) B. The domain of \( f+g \) is \( \{\quad \). (Use a comma to separate answers as needed.) C. The domain of \( f+g \) is \( \varnothing \). What is the domain of \( f-g \) ? ( \( f-g)(x)=\frac{1}{x-9} \) (Simplify your answer.) The domain of \( f-g \) is \( (-\infty,-9) \cup(-9,9) \cup(9, \infty) \). (Type your answer in interval notation.) B. The domain of \( f-g \) is \( \{ \). (Use a comma to separate answers as needed.) C. The domain of \( f-g \) is \( \varnothing \). (fg)(x) \( =\square \) (Simplify your answer.)

Ask by Goodwin Lyons. in the United States
Feb 25,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

Here are the results: 1. \( f + g = \frac{5x + 7}{x^2 - 81} \) - Domain: \( (-\infty, -9) \cup (-9, 9) \cup (9, \infty) \) 2. \( f - g = \frac{x + 9}{x^2 - 81} \) - Domain: \( (-\infty, -9) \cup (-9, 9) \cup (9, \infty) \) 3. \( fg = \frac{(3x + 8)(2x - 1)}{(x^2 - 81)^2} \) - Domain: \( (-\infty, -9) \cup (-9, 9) \cup (9, \infty) \) 4. \( \frac{f}{g} = \frac{3x + 8}{2x - 1} \) - Domain: \( (-\infty, -9) \cup (-9, \frac{1}{2}) \cup (\frac{1}{2}, 9) \cup (9, \infty) \)

Solution

To solve the problem, we will first find \( f+g \), \( f-g \), \( fg \), and \( \frac{f}{g} \) for the given functions \( f(x) \) and \( g(x) \). We will also determine the domain for each function. Given: \[ f(x) = \frac{3x + 8}{x^2 - 81}, \quad g(x) = \frac{2x - 1}{x^2 - 81} \] ### Step 1: Find \( f + g \) \[ f + g = \frac{3x + 8}{x^2 - 81} + \frac{2x - 1}{x^2 - 81} = \frac{(3x + 8) + (2x - 1)}{x^2 - 81} = \frac{5x + 7}{x^2 - 81} \] ### Step 2: Find the domain of \( f + g \) The domain of \( f + g \) is determined by the denominator \( x^2 - 81 \neq 0 \): \[ x^2 - 81 = 0 \implies x^2 = 81 \implies x = \pm 9 \] Thus, the domain is: \[ (-\infty, -9) \cup (-9, 9) \cup (9, \infty) \] ### Step 3: Find \( f - g \) \[ f - g = \frac{3x + 8}{x^2 - 81} - \frac{2x - 1}{x^2 - 81} = \frac{(3x + 8) - (2x - 1)}{x^2 - 81} = \frac{x + 9}{x^2 - 81} \] ### Step 4: Find the domain of \( f - g \) The domain of \( f - g \) is the same as that of \( f + g \): \[ (-\infty, -9) \cup (-9, 9) \cup (9, \infty) \] ### Step 5: Find \( fg \) \[ fg = f \cdot g = \left(\frac{3x + 8}{x^2 - 81}\right) \cdot \left(\frac{2x - 1}{x^2 - 81}\right) = \frac{(3x + 8)(2x - 1)}{(x^2 - 81)^2} \] ### Step 6: Find the domain of \( fg \) The domain of \( fg \) is also determined by the denominator \( (x^2 - 81)^2 \neq 0 \): \[ x^2 - 81 = 0 \implies x = \pm 9 \] Thus, the domain is: \[ (-\infty, -9) \cup (-9, 9) \cup (9, \infty) \] ### Step 7: Find \( \frac{f}{g} \) \[ \frac{f}{g} = \frac{\frac{3x + 8}{x^2 - 81}}{\frac{2x - 1}{x^2 - 81}} = \frac{3x + 8}{2x - 1} \] ### Step 8: Find the domain of \( \frac{f}{g} \) The domain of \( \frac{f}{g} \) is determined by both the denominator \( 2x - 1 \neq 0 \) and \( x^2 - 81 \neq 0 \): 1. \( 2x - 1 = 0 \implies x = \frac{1}{2} \) 2. \( x^2 - 81 = 0 \implies x = \pm 9 \) Thus, the domain is: \[ (-\infty, -9) \cup (-9, \frac{1}{2}) \cup (\frac{1}{2}, 9) \cup (9, \infty) \] ### Summary of Results 1. \( f + g = \frac{5x + 7}{x^2 - 81} \) - Domain: \( (-\infty, -9) \cup (-9, 9) \cup (9, \infty) \) 2. \( f - g = \frac{x + 9}{x^2 - 81} \) - Domain: \( (-\infty, -9) \cup (-9, 9) \cup (9, \infty) \) 3. \( fg = \frac{(3x + 8)(2x - 1)}{(x^2 - 81)^2} \) - Domain: \( (-\infty, -9) \cup (-9, 9) \cup (9, \infty) \) 4. \( \frac{f}{g} = \frac{3x + 8}{2x - 1} \) - Domain: \( (-\infty, -9) \cup (-9, \frac{1}{2}) \cup (\frac{1}{2}, 9) \cup (9, \infty) \)

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Beyond the Answer

Let's start by finding \( f + g \), \( f - g \), \( fg \), and \( \frac{f}{g} \) for the functions \( f(x) = \frac{3x + 8}{x^2 - 81} \) and \( g(x) = \frac{2x - 1}{x^2 - 81} \). **1. Finding \( f + g \):** \[ f + g = \frac{3x + 8}{x^2 - 81} + \frac{2x - 1}{x^2 - 81} = \frac{(3x + 8) + (2x - 1)}{x^2 - 81} = \frac{5x + 7}{x^2 - 81} \] **2. Finding \( f - g \):** \[ f - g = \frac{3x + 8}{x^2 - 81} - \frac{2x - 1}{x^2 - 81} = \frac{(3x + 8) - (2x - 1)}{x^2 - 81} = \frac{x + 9}{x^2 - 81} \] **3. Finding \( fg \):** \[ fg = \frac{3x + 8}{x^2 - 81} \cdot \frac{2x - 1}{x^2 - 81} = \frac{(3x + 8)(2x - 1)}{(x^2 - 81)^2} \] **4. Finding \( \frac{f}{g} \):** \[ \frac{f}{g} = \frac{\frac{3x + 8}{x^2 - 81}}{\frac{2x - 1}{x^2 - 81}} = \frac{3x + 8}{2x - 1} \] Now, to determine the domain of each function: Both \( f(x) \) and \( g(x) \) have the denominator \( x^2 - 81 \), which can be factored as \( (x - 9)(x + 9) \). Thus, the function is undefined at \( x = 9 \) and \( x = -9 \). Therefore, the domains for the functions are: - \( f+g \): \( (-\infty, -9) \cup (-9, 9) \cup (9, \infty) \) - \( f-g \): \( (-\infty, -9) \cup (-9, 9) \cup (9, \infty) \) - \( fg \): \( (-\infty, -9) \cup (-9, 9) \cup (9, \infty) \) - \( \frac{f}{g} \): \( (-\infty, -9) \cup (-9, 9) \cup (9, \infty) \) Thus, the answer to the domains for each function in interval notation is: - The domain of \( f+g \) is \( (-\infty, -9) \cup (-9, 9) \cup (9, \infty) \). - The domain of \( f-g \) is \( (-\infty, -9) \cup (-9, 9) \cup (9, \infty) \). - The domain for \( fg \) is \( (-\infty, -9) \cup (-9, 9) \cup (9, \infty) \). - The domain for \( \frac{f}{g} \) is \( (-\infty, -9) \cup (-9, 9) \cup (9, \infty) \). This means domains in set notation would be \( \{ x | x \neq -9, x \neq 9 \} \) for \( f+g \) and \( f-g \).

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy