Pregunta
upstudy study bank question image url

Find \( f+g, f-g, f g \) and \( \frac{f}{g} \). Determine the domain for each function. \( f(x)=\frac{3 x+8}{x^{2}-81}, g(x)=\frac{2 x-1}{x^{2}-81} \) A. The domain of \( f+g \) is \( (-\infty,-9) \cup(-9,9) \cup(9, \infty) \) (Type your answer in interval notation.) B. The domain of \( f+g \) is \( \{\quad \). (Use a comma to separate answers as needed.) C. The domain of \( f+g \) is \( \varnothing \). What is the domain of \( f-g \) ? ( \( f-g)(x)=\frac{1}{x-9} \) (Simplify your answer.) The domain of \( f-g \) is \( (-\infty,-9) \cup(-9,9) \cup(9, \infty) \). (Type your answer in interval notation.) B. The domain of \( f-g \) is \( \{ \). (Use a comma to separate answers as needed.) C. The domain of \( f-g \) is \( \varnothing \). (fg)(x) \( =\square \) (Simplify your answer.)

Ask by Goodwin Lyons. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Here are the results: 1. \( f + g = \frac{5x + 7}{x^2 - 81} \) - Domain: \( (-\infty, -9) \cup (-9, 9) \cup (9, \infty) \) 2. \( f - g = \frac{x + 9}{x^2 - 81} \) - Domain: \( (-\infty, -9) \cup (-9, 9) \cup (9, \infty) \) 3. \( fg = \frac{(3x + 8)(2x - 1)}{(x^2 - 81)^2} \) - Domain: \( (-\infty, -9) \cup (-9, 9) \cup (9, \infty) \) 4. \( \frac{f}{g} = \frac{3x + 8}{2x - 1} \) - Domain: \( (-\infty, -9) \cup (-9, \frac{1}{2}) \cup (\frac{1}{2}, 9) \cup (9, \infty) \)

Solución

To solve the problem, we will first find \( f+g \), \( f-g \), \( fg \), and \( \frac{f}{g} \) for the given functions \( f(x) \) and \( g(x) \). We will also determine the domain for each function. Given: \[ f(x) = \frac{3x + 8}{x^2 - 81}, \quad g(x) = \frac{2x - 1}{x^2 - 81} \] ### Step 1: Find \( f + g \) \[ f + g = \frac{3x + 8}{x^2 - 81} + \frac{2x - 1}{x^2 - 81} = \frac{(3x + 8) + (2x - 1)}{x^2 - 81} = \frac{5x + 7}{x^2 - 81} \] ### Step 2: Find the domain of \( f + g \) The domain of \( f + g \) is determined by the denominator \( x^2 - 81 \neq 0 \): \[ x^2 - 81 = 0 \implies x^2 = 81 \implies x = \pm 9 \] Thus, the domain is: \[ (-\infty, -9) \cup (-9, 9) \cup (9, \infty) \] ### Step 3: Find \( f - g \) \[ f - g = \frac{3x + 8}{x^2 - 81} - \frac{2x - 1}{x^2 - 81} = \frac{(3x + 8) - (2x - 1)}{x^2 - 81} = \frac{x + 9}{x^2 - 81} \] ### Step 4: Find the domain of \( f - g \) The domain of \( f - g \) is the same as that of \( f + g \): \[ (-\infty, -9) \cup (-9, 9) \cup (9, \infty) \] ### Step 5: Find \( fg \) \[ fg = f \cdot g = \left(\frac{3x + 8}{x^2 - 81}\right) \cdot \left(\frac{2x - 1}{x^2 - 81}\right) = \frac{(3x + 8)(2x - 1)}{(x^2 - 81)^2} \] ### Step 6: Find the domain of \( fg \) The domain of \( fg \) is also determined by the denominator \( (x^2 - 81)^2 \neq 0 \): \[ x^2 - 81 = 0 \implies x = \pm 9 \] Thus, the domain is: \[ (-\infty, -9) \cup (-9, 9) \cup (9, \infty) \] ### Step 7: Find \( \frac{f}{g} \) \[ \frac{f}{g} = \frac{\frac{3x + 8}{x^2 - 81}}{\frac{2x - 1}{x^2 - 81}} = \frac{3x + 8}{2x - 1} \] ### Step 8: Find the domain of \( \frac{f}{g} \) The domain of \( \frac{f}{g} \) is determined by both the denominator \( 2x - 1 \neq 0 \) and \( x^2 - 81 \neq 0 \): 1. \( 2x - 1 = 0 \implies x = \frac{1}{2} \) 2. \( x^2 - 81 = 0 \implies x = \pm 9 \) Thus, the domain is: \[ (-\infty, -9) \cup (-9, \frac{1}{2}) \cup (\frac{1}{2}, 9) \cup (9, \infty) \] ### Summary of Results 1. \( f + g = \frac{5x + 7}{x^2 - 81} \) - Domain: \( (-\infty, -9) \cup (-9, 9) \cup (9, \infty) \) 2. \( f - g = \frac{x + 9}{x^2 - 81} \) - Domain: \( (-\infty, -9) \cup (-9, 9) \cup (9, \infty) \) 3. \( fg = \frac{(3x + 8)(2x - 1)}{(x^2 - 81)^2} \) - Domain: \( (-\infty, -9) \cup (-9, 9) \cup (9, \infty) \) 4. \( \frac{f}{g} = \frac{3x + 8}{2x - 1} \) - Domain: \( (-\infty, -9) \cup (-9, \frac{1}{2}) \cup (\frac{1}{2}, 9) \cup (9, \infty) \)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

Let's start by finding \( f + g \), \( f - g \), \( fg \), and \( \frac{f}{g} \) for the functions \( f(x) = \frac{3x + 8}{x^2 - 81} \) and \( g(x) = \frac{2x - 1}{x^2 - 81} \). **1. Finding \( f + g \):** \[ f + g = \frac{3x + 8}{x^2 - 81} + \frac{2x - 1}{x^2 - 81} = \frac{(3x + 8) + (2x - 1)}{x^2 - 81} = \frac{5x + 7}{x^2 - 81} \] **2. Finding \( f - g \):** \[ f - g = \frac{3x + 8}{x^2 - 81} - \frac{2x - 1}{x^2 - 81} = \frac{(3x + 8) - (2x - 1)}{x^2 - 81} = \frac{x + 9}{x^2 - 81} \] **3. Finding \( fg \):** \[ fg = \frac{3x + 8}{x^2 - 81} \cdot \frac{2x - 1}{x^2 - 81} = \frac{(3x + 8)(2x - 1)}{(x^2 - 81)^2} \] **4. Finding \( \frac{f}{g} \):** \[ \frac{f}{g} = \frac{\frac{3x + 8}{x^2 - 81}}{\frac{2x - 1}{x^2 - 81}} = \frac{3x + 8}{2x - 1} \] Now, to determine the domain of each function: Both \( f(x) \) and \( g(x) \) have the denominator \( x^2 - 81 \), which can be factored as \( (x - 9)(x + 9) \). Thus, the function is undefined at \( x = 9 \) and \( x = -9 \). Therefore, the domains for the functions are: - \( f+g \): \( (-\infty, -9) \cup (-9, 9) \cup (9, \infty) \) - \( f-g \): \( (-\infty, -9) \cup (-9, 9) \cup (9, \infty) \) - \( fg \): \( (-\infty, -9) \cup (-9, 9) \cup (9, \infty) \) - \( \frac{f}{g} \): \( (-\infty, -9) \cup (-9, 9) \cup (9, \infty) \) Thus, the answer to the domains for each function in interval notation is: - The domain of \( f+g \) is \( (-\infty, -9) \cup (-9, 9) \cup (9, \infty) \). - The domain of \( f-g \) is \( (-\infty, -9) \cup (-9, 9) \cup (9, \infty) \). - The domain for \( fg \) is \( (-\infty, -9) \cup (-9, 9) \cup (9, \infty) \). - The domain for \( \frac{f}{g} \) is \( (-\infty, -9) \cup (-9, 9) \cup (9, \infty) \). This means domains in set notation would be \( \{ x | x \neq -9, x \neq 9 \} \) for \( f+g \) and \( f-g \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad