Answer
(12) \( \frac{1}{6} \)
(13) \( \frac{3x^2 - 4x}{3x - 2} \)
Solution
Simplify the expression by following steps:
- step0: Solution:
\(x-\frac{2x}{\left(3x-2\right)}\)
- step1: Remove the parentheses:
\(x-\frac{2x}{3x-2}\)
- step2: Reduce fractions to a common denominator:
\(\frac{x\left(3x-2\right)}{3x-2}-\frac{2x}{3x-2}\)
- step3: Transform the expression:
\(\frac{x\left(3x-2\right)-2x}{3x-2}\)
- step4: Multiply the terms:
\(\frac{3x^{2}-2x-2x}{3x-2}\)
- step5: Subtract the terms:
\(\frac{3x^{2}-4x}{3x-2}\)
Calculate or simplify the expression \( (x-3)/3 - (x-2)/2 + (x+1)/6 \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{\left(x-3\right)}{3}-\frac{\left(x-2\right)}{2}+\frac{\left(x+1\right)}{6}\)
- step1: Remove the parentheses:
\(\frac{x-3}{3}-\frac{x-2}{2}+\frac{x+1}{6}\)
- step2: Reduce fractions to a common denominator:
\(\frac{\left(x-3\right)\times 2}{3\times 2}-\frac{\left(x-2\right)\times 3}{2\times 3}+\frac{x+1}{6}\)
- step3: Multiply the numbers:
\(\frac{\left(x-3\right)\times 2}{6}-\frac{\left(x-2\right)\times 3}{2\times 3}+\frac{x+1}{6}\)
- step4: Multiply the numbers:
\(\frac{\left(x-3\right)\times 2}{6}-\frac{\left(x-2\right)\times 3}{6}+\frac{x+1}{6}\)
- step5: Transform the expression:
\(\frac{\left(x-3\right)\times 2-\left(x-2\right)\times 3+x+1}{6}\)
- step6: Multiply the terms:
\(\frac{2x-6-\left(x-2\right)\times 3+x+1}{6}\)
- step7: Multiply the terms:
\(\frac{2x-6-\left(3x-6\right)+x+1}{6}\)
- step8: Calculate:
\(\frac{1}{6}\)
Let's simplify each expression step by step.
### Problem (12)
The expression is:
\[
\frac{x-3}{3} - \frac{x-2}{2} + \frac{x+1}{6}
\]
To simplify this, we need a common denominator. The least common multiple of the denominators \(3\), \(2\), and \(6\) is \(6\).
1. Rewrite each term with the common denominator:
- \(\frac{x-3}{3} = \frac{2(x-3)}{6} = \frac{2x - 6}{6}\)
- \(\frac{x-2}{2} = \frac{3(x-2)}{6} = \frac{3x - 6}{6}\)
- \(\frac{x+1}{6} = \frac{x+1}{6}\)
2. Combine the fractions:
\[
\frac{2x - 6 - (3x - 6) + (x + 1)}{6}
\]
3. Simplify the numerator:
\[
2x - 6 - 3x + 6 + x + 1 = 0 + 1 = 1
\]
Thus, the expression simplifies to:
\[
\frac{1}{6}
\]
### Problem (13)
The expression is:
\[
x - \frac{2x}{3x-2}
\]
To simplify this, we can combine the terms over a common denominator, which is \(3x - 2\).
1. Rewrite \(x\) with the common denominator:
\[
x = \frac{x(3x-2)}{3x-2} = \frac{3x^2 - 2x}{3x - 2}
\]
2. Combine the fractions:
\[
\frac{3x^2 - 2x - 2x}{3x - 2} = \frac{3x^2 - 4x}{3x - 2}
\]
Thus, the expression simplifies to:
\[
\frac{3x^2 - 4x}{3x - 2}
\]
### Final Results
- For (12): \(\frac{1}{6}\)
- For (13): \(\frac{3x^2 - 4x}{3x - 2}\)
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution