Pregunta
upstudy study bank question image url

(12) \( \frac{x-3}{3}-\frac{x-2}{2}+\frac{x+1}{6} \) (13) \( x-\frac{2 x}{3 x-2} \)

Ask by Chadwick Lawson. in South Africa
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

(12) \( \frac{1}{6} \) (13) \( \frac{3x^2 - 4x}{3x - 2} \)

Solución

Simplify the expression by following steps: - step0: Solution: \(x-\frac{2x}{\left(3x-2\right)}\) - step1: Remove the parentheses: \(x-\frac{2x}{3x-2}\) - step2: Reduce fractions to a common denominator: \(\frac{x\left(3x-2\right)}{3x-2}-\frac{2x}{3x-2}\) - step3: Transform the expression: \(\frac{x\left(3x-2\right)-2x}{3x-2}\) - step4: Multiply the terms: \(\frac{3x^{2}-2x-2x}{3x-2}\) - step5: Subtract the terms: \(\frac{3x^{2}-4x}{3x-2}\) Calculate or simplify the expression \( (x-3)/3 - (x-2)/2 + (x+1)/6 \). Simplify the expression by following steps: - step0: Solution: \(\frac{\left(x-3\right)}{3}-\frac{\left(x-2\right)}{2}+\frac{\left(x+1\right)}{6}\) - step1: Remove the parentheses: \(\frac{x-3}{3}-\frac{x-2}{2}+\frac{x+1}{6}\) - step2: Reduce fractions to a common denominator: \(\frac{\left(x-3\right)\times 2}{3\times 2}-\frac{\left(x-2\right)\times 3}{2\times 3}+\frac{x+1}{6}\) - step3: Multiply the numbers: \(\frac{\left(x-3\right)\times 2}{6}-\frac{\left(x-2\right)\times 3}{2\times 3}+\frac{x+1}{6}\) - step4: Multiply the numbers: \(\frac{\left(x-3\right)\times 2}{6}-\frac{\left(x-2\right)\times 3}{6}+\frac{x+1}{6}\) - step5: Transform the expression: \(\frac{\left(x-3\right)\times 2-\left(x-2\right)\times 3+x+1}{6}\) - step6: Multiply the terms: \(\frac{2x-6-\left(x-2\right)\times 3+x+1}{6}\) - step7: Multiply the terms: \(\frac{2x-6-\left(3x-6\right)+x+1}{6}\) - step8: Calculate: \(\frac{1}{6}\) Let's simplify each expression step by step. ### Problem (12) The expression is: \[ \frac{x-3}{3} - \frac{x-2}{2} + \frac{x+1}{6} \] To simplify this, we need a common denominator. The least common multiple of the denominators \(3\), \(2\), and \(6\) is \(6\). 1. Rewrite each term with the common denominator: - \(\frac{x-3}{3} = \frac{2(x-3)}{6} = \frac{2x - 6}{6}\) - \(\frac{x-2}{2} = \frac{3(x-2)}{6} = \frac{3x - 6}{6}\) - \(\frac{x+1}{6} = \frac{x+1}{6}\) 2. Combine the fractions: \[ \frac{2x - 6 - (3x - 6) + (x + 1)}{6} \] 3. Simplify the numerator: \[ 2x - 6 - 3x + 6 + x + 1 = 0 + 1 = 1 \] Thus, the expression simplifies to: \[ \frac{1}{6} \] ### Problem (13) The expression is: \[ x - \frac{2x}{3x-2} \] To simplify this, we can combine the terms over a common denominator, which is \(3x - 2\). 1. Rewrite \(x\) with the common denominator: \[ x = \frac{x(3x-2)}{3x-2} = \frac{3x^2 - 2x}{3x - 2} \] 2. Combine the fractions: \[ \frac{3x^2 - 2x - 2x}{3x - 2} = \frac{3x^2 - 4x}{3x - 2} \] Thus, the expression simplifies to: \[ \frac{3x^2 - 4x}{3x - 2} \] ### Final Results - For (12): \(\frac{1}{6}\) - For (13): \(\frac{3x^2 - 4x}{3x - 2}\)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

Let's take a playful dive into these expressions! For the first expression \( \frac{x-3}{3}-\frac{x-2}{2}+\frac{x+1}{6} \): Did you know that finding a common denominator is like making a cake? You need all the ingredients (denominators) to come together to create a smooth mix! In this case, the common denominator is 6. Combine the fractions to simplify the expression into a delightful single fraction. It’s like turning a jumble of ingredients into a tasty slice! Now, for the second expression \( x-\frac{2 x}{3 x-2} \): This expression gives you the chance to showcase your skills in algebraic manipulation. When subtracting a fraction, multiply the whole number \( x \) by the denominator to create a common ground. Transform the whole into fractions, subtract, and simplify! Mistakes often happen when people forget to distribute or simplify properly. So keep your eyes peeled for those sneaky numbers!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad