QUEDIIUN 12 \( \begin{array}{l}12.1 \text { Prove that, if } \cos (\alpha-x) \neq 0 \\ \frac{\sin \left(x+450^{\circ}-\alpha\right)}{\cos (\alpha-x)}\end{array}=1 \) (3) \( \begin{array}{l}\text { Determine the general solution of } \cos 2 x=1-3 \cos x\end{array} \)
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


Mind Expander
To prove that if \(\cos (\alpha-x) \neq 0\), then \[ \frac{\sin \left(x+450^{\circ}-\alpha\right)}{\cos (\alpha-x)} = 1, \] we can start by simplifying \(\sin \left(x + 450^{\circ} - \alpha\right)\). Recall that \(450^{\circ}\) is equivalent to \(90^{\circ}\) since \(450^{\circ} - 360^{\circ} = 90^{\circ}\). Thus, \[ \sin \left(x + 450^{\circ} - \alpha\right) = \sin \left(x + 90^{\circ} - \alpha\right) = \cos \left(x - \alpha\right). \] Now the expression simplifies to \[ \frac{\cos (x - \alpha)}{\cos (\alpha - x)}. \] Since \(\cos(\alpha - x) = \cos(x - \alpha)\), we end up with \[ \frac{\cos (x - \alpha)}{\cos (x - \alpha)} = 1. \] Now, for the second part of the problem, to determine the general solution of \[ \cos 2x = 1 - 3 \cos x, \] we can use the double angle formula \(\cos 2x = 2\cos^2 x - 1\) to rewrite the equation: \[ 2\cos^2 x - 1 = 1 - 3\cos x. \] Rearranging gives: \[ 2\cos^2 x + 3\cos x - 2 = 0. \] This is a quadratic equation in terms of \(\cos x\). Let \(u = \cos x\), then the equation becomes: \[ 2u^2 + 3u - 2 = 0. \] Using the quadratic formula, \(u = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\): \[ u = \frac{-3 \pm \sqrt{3^2 - 4 \cdot 2 \cdot (-2)}}{2 \cdot 2} = \frac{-3 \pm \sqrt{9 + 16}}{4} = \frac{-3 \pm 5}{4}. \] Calculating the roots gives: 1. \(u = \frac{2}{4} = \frac{1}{2}\) 2. \(u = \frac{-8}{4} = -2\) (not valid since \(u = \cos x\) must be in \([-1, 1]\)) So, we are left with \(\cos x = \frac{1}{2}\). The general solution for this is: \[ x = n\cdot360^\circ \pm 60^\circ \quad (n \in \mathbb{Z}). \]