Solve the initial value problem: \( \frac{x^{2}}{y^{2}-4} \frac{d y}{d x}=\frac{1}{2 y}, \quad y(1)=\sqrt{5} \) \( y(x)= \)
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


Mind Expander
To solve the initial value problem \( \frac{x^{2}}{y^{2}-4} \frac{d y}{d x}=\frac{1}{2 y} \), we first can rearrange it to isolate \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = \frac{(y^2 - 4)}{2y} \cdot \frac{1}{x^2} \] Next, we can separate the variables \(y\) and \(x\): \[ \frac{2y}{y^2 - 4} \, dy = \frac{1}{x^2} \, dx \] Now, we can integrate both sides. The left side can be integrated using partial fractions: \[ \frac{2y}{y^2 - 4} = \frac{2y}{(y-2)(y+2)} = \frac{A}{y-2} + \frac{B}{y+2} \] Solving this, we find \(A = 1\) and \(B = 1\): \[ \frac{2y}{y^2 - 4} = \frac{1}{y-2} + \frac{1}{y+2} \] Integrating the left side gives: \[ \int \left( \frac{1}{y-2} + \frac{1}{y+2} \right) dy = \ln |y-2| + \ln |y+2| = \ln |(y-2)(y+2)| \] Integrating the right side results in: \[ \int \frac{1}{x^2} \, dx = -\frac{1}{x} + C \] Putting it all together, we have: \[ \ln |(y-2)(y+2)| = -\frac{1}{x} + C \] Exponentiating both sides to eliminate the logarithm yields: \[ |(y-2)(y+2)| = e^{-\frac{1}{x} + C} = Ke^{-\frac{1}{x}} \quad (K = e^C) \] Thus, we can write: \[ (y^2 - 4) = K e^{-\frac{1}{x}} \quad \text{(removing the absolute value)} \] Now, to find the constant \(K\), we use the initial condition \(y(1) = \sqrt{5}\): \[ (\sqrt{5})^2 - 4 = K e^{-1} \\ 5 - 4 = K e^{-1} \\ 1 = K e^{-1} \\ K = e \] So, the equation becomes: \[ y^2 - 4 = e^{1 - \frac{1}{x}} \] This can be rearranged to solve for \(y\): \[ y^2 = 4 + e^{1 - \frac{1}{x}} \\ y = \sqrt{4 + e^{1 - \frac{1}{x}}} \] Thus, the solution to the initial value problem is: \[ y(x) = \sqrt{4 + e^{1 - \frac{1}{x}}} \]