Let \( f(x)=|x|-6 \) Use the definition of the absolute value to expand and write the function as a piecewise define function, Choose the most correct answer, (A) \( f(x)=|x|-6=\left\{\begin{array}{ll}x-6 & \text { if } x \geq 6 \\ -x-6 & \text { if } x<6\end{array}\right. \) (B) \( f(x)=|x|-6=\left\{\begin{array}{ll}x-6 & \text { if } x \geq 6 \\ -x+6 & \text { if } x<6\end{array}\right. \) (C) \( f(x)=|x|-6=\left\{\begin{array}{ll}x-6 & \text { if } x \geq 0 \\ -x+6 & \text { if } x<0\end{array}\right. \) (D) \( f(x)=|x|-6=\left\{\begin{array}{ll}x-6 & \text { if } x \geq 0 \\ -x-6 & \text { if } x<0\end{array}\right. \)
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


Beyond the Answer
To expand \( f(x) = |x| - 6 \) using the definition of the absolute value, we consider two cases: when \( x \geq 0 \) and when \( x < 0 \). 1. **If \( x \geq 0 \)**, then \( |x| = x \). Thus, \( f(x) = x - 6 \). 2. **If \( x < 0 \)**, then \( |x| = -x \). Therefore, \( f(x) = -x - 6 \). Combining these cases, we get: \[ f(x) = \left\{ \begin{array}{ll} x - 6 & \text{if } x \geq 0 \\ -x - 6 & \text{if } x < 0 \end{array} \right. \] Thus, the correct piecewise definition of the function is: (D) \( f(x)=|x|-6=\left\{\begin{array}{ll}x-6 & \text { if } x \geq 0 \\ -x-6 & \text { if } x<0\end{array}\right. \)