Question
upstudy study bank question image url

EDUCA ION b) Find the directional derivative \( D_{u} f(x, y, z) \) for \( f(x, y, z)=\sin (y z)+\ln x^{2} \) in the direction of the vector \( v=\langle 1,1,-1\rangle \). Hence find \( D_{u} f(1,1, \pi) \). [12 marks]

Ask by Cole Donnelly. in Ghana
Nov 05,2024

Upstudy AI Solution

Tutor-Verified Answer

Answer

The directional derivative \( D_{u} f(1, 1, \pi) \) is \( \frac{3 - \pi}{\sqrt{3}} \).

Solution

To find the directional derivative \( D_{u} f(x, y, z) \) of the function \( f(x, y, z) = \sin(yz) + \ln(x^2) \) in the direction of the vector \( v = \langle 1, 1, -1 \rangle \), we will follow these steps: 1. **Calculate the gradient \( \nabla f \)**. 2. **Normalize the direction vector \( v \)** to obtain the unit vector \( u \). 3. **Compute the directional derivative using the formula** \( D_{u} f = \nabla f \cdot u \). ### Step 1: Calculate the Gradient \( \nabla f \) The gradient \( \nabla f \) is given by the vector of partial derivatives: \[ \nabla f = \left( \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right) \] **Partial Derivative with respect to \( x \)**: \[ \frac{\partial f}{\partial x} = \frac{\partial}{\partial x} \left( \sin(yz) + \ln(x^2) \right) = 0 + \frac{2}{x} = \frac{2}{x} \] **Partial Derivative with respect to \( y \)**: \[ \frac{\partial f}{\partial y} = \frac{\partial}{\partial y} \left( \sin(yz) + \ln(x^2) \right) = z \cos(yz) + 0 = z \cos(yz) \] **Partial Derivative with respect to \( z \)**: \[ \frac{\partial f}{\partial z} = \frac{\partial}{\partial z} \left( \sin(yz) + \ln(x^2) \right) = y \cos(yz) + 0 = y \cos(yz) \] Thus, the gradient is: \[ \nabla f = \left( \frac{2}{x}, z \cos(yz), y \cos(yz) \right) \] ### Step 2: Normalize the Direction Vector \( v \) The direction vector \( v = \langle 1, 1, -1 \rangle \) needs to be normalized to find the unit vector \( u \): \[ \|v\| = \sqrt{1^2 + 1^2 + (-1)^2} = \sqrt{1 + 1 + 1} = \sqrt{3} \] The unit vector \( u \) is: \[ u = \frac{1}{\sqrt{3}} \langle 1, 1, -1 \rangle = \left\langle \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}} \right\rangle \] ### Step 3: Compute the Directional Derivative Now we need to evaluate \( \nabla f \) at the point \( (1, 1, \pi) \): 1. **Calculate \( \nabla f(1, 1, \pi) \)**: \[ \nabla f(1, 1, \pi) = \left( \frac{2}{1}, \pi \cos(1 \cdot \pi), 1 \cdot \cos(1 \cdot \pi) \right) = \left( 2, \pi \cos(\pi), \cos(\pi) \right) \] Since \( \cos(\pi) = -1 \): \[ \nabla f(1, 1, \pi) = \left( 2, \pi(-1), -1 \right) = \left( 2, -\pi, -1 \right) \] 2. **Compute the directional derivative**: \[ D_{u} f(1, 1, \pi) = \nabla f(1, 1, \pi) \cdot u \] Calculating the dot product: \[ D_{u} f(1, 1, \pi) = \left( 2, -\pi, -1 \right) \cdot \left\langle \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}} \right\rangle \] \[ = 2 \cdot \frac{1}{\sqrt{3}} + (-\pi) \cdot \frac{1}{\sqrt{3}} + (-1) \cdot \left(-\frac{1}{\sqrt{3}}\right) \] \[ = \frac{2}{\sqrt{3}} - \frac{\pi}{\sqrt{3}} + \frac{1}{\sqrt{3}} = \frac{2 - \pi + 1}{\sqrt{3}} = \frac{3 - \pi}{\sqrt{3}} \] ### Final Result Thus, the directional derivative \( D_{u} f(1, 1, \pi) \) is: \[ \boxed{\frac{3 - \pi}{\sqrt{3}}} \]

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Bonus Knowledge

To find the directional derivative \( D_{u} f(x, y, z) \) of the function \( f(x, y, z) = \sin(yz) + \ln(x^2) \) in the direction of the vector \( v = \langle 1, 1, -1 \rangle \), we need to follow these steps: 1. **Normalize the direction vector** \( v \): \[ u = \frac{v}{\|v\|} = \frac{1}{\sqrt{3}} \langle 1, 1, -1 \rangle \] where \( \|v\| = \sqrt{1^2 + 1^2 + (-1)^2} = \sqrt{3} \). 2. **Calculate the gradient** of \( f \): \[ \nabla f(x, y, z) = \left( \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right) \] - \( \frac{\partial f}{\partial x} = \frac{2}{x} \) - \( \frac{\partial f}{\partial y} = z \cos(yz) \) - \( \frac{\partial f}{\partial z} = y \cos(yz) \) So, \[ \nabla f(x, y, z) = \left( \frac{2}{x}, z \cos(yz), y \cos(yz) \right) \] 3. **Evaluate the gradient at the point** \( (1, 1, \pi) \): \[ \nabla f(1, 1, \pi) = \left( 2, \pi \cos(\pi), 1 \cos(\pi) \right) = \left( 2, 0, -1 \right) \] 4. **Calculate the directional derivative**: \[ D_{u} f(1, 1, \pi) = \nabla f(1, 1, \pi) \cdot u \] This gives us: \[ D_{u} f(1, 1, \pi) = \left( 2, 0, -1 \right) \cdot \left( \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}} \right) = \frac{2}{\sqrt{3}} + 0 + \frac{1}{\sqrt{3}} = \frac{3}{\sqrt{3}} = \sqrt{3} \] So, the directional derivative \( D_{u} f(1, 1, \pi) \) is \( \sqrt{3} \).

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy