Question
upstudy study bank question image url

Determine whether the given set, together with the specified operations of addition and scalar multiplication, is a vector space. If it is not, select all of the axioms that fail to hold. (Let \( \mathbf{u}, \mathbf{v} \), and \( \mathbf{w} \) be vectors in the vector space \( V \), and let \( c \) and \( d \) be scalars.) \( \mathbb{R}^{2} \), with the usual addition but scalar multiplication defined by \( c\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{r}x \\ c y\end{array}\right] \). All of the axioms hold, so the given set is a vector space. 1. \( \mathbf{u}+\mathbf{v} \) is in \( v \). 2. \( \mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u} \) 3. \( (\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w}) \) 4. There exists an element \( \mathbf{0} \) in \( V \), called a zero vector, such that \( \mathbf{u}+\mathbf{0}=\mathbf{u} \). 5. For each \( \mathbf{u} \) in \( V \), there is an element -u in \( V \) such that \( \mathbf{u}+(-\mathbf{u})=\mathbf{0} \). 6. \( c \mathbf{u} \) is in \( V \). 7. \( c(\mathbf{u}+\mathbf{v})=c \mathbf{u}+c \mathbf{v} \) 8. \( (c+d) \mathbf{u}=c \mathbf{u}+d \mathbf{u} \) 9. \( c(d \mathbf{u})=(c d) \mathbf{u} \) 10. \( 1 \mathbf{u}=\mathbf{u} \)

Ask by Martinez Graham. in Bahrain
Mar 14,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

Axiom 8 fails, so the given set is not a vector space.

Solution

We are given the set \( \mathbb{R}^2 \) with the usual addition \[ \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} x+x' \\ y+y' \end{bmatrix}, \] but with scalar multiplication defined by \[ c\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ c y \end{bmatrix}. \] We will check the vector space axioms: 1. **Closure under addition:** For any two vectors \(\begin{bmatrix} x \\ y \end{bmatrix}\) and \(\begin{bmatrix} x' \\ y' \end{bmatrix}\), their sum is \[ \begin{bmatrix} x+x' \\ y+y' \end{bmatrix} \in \mathbb{R}^2. \] So this axiom holds. 2. **Commutativity of addition:** Since addition is the usual one, \[ \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} x+x' \\ y+y' \end{bmatrix} = \begin{bmatrix} x'+x \\ y'+y \end{bmatrix} = \begin{bmatrix} x' \\ y' \end{bmatrix} + \begin{bmatrix} x \\ y \end{bmatrix}. \] This axiom holds. 3. **Associativity of addition:** For any three vectors, the usual addition is associative. Thus, \[ (\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w}). \] This axiom holds. 4. **Existence of a zero vector:** The zero vector in \(\mathbb{R}^2\) is \(\begin{bmatrix} 0 \\ 0 \end{bmatrix}\) because \[ \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix}. \] This axiom holds. 5. **Existence of additive inverses:** For any \(\begin{bmatrix} x \\ y \end{bmatrix}\), its additive inverse is \(\begin{bmatrix} -x \\ -y \end{bmatrix}\) since \[ \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} -x \\ -y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}. \] This axiom holds. 6. **Closure under scalar multiplication:** For any scalar \( c \) and vector \( \begin{bmatrix} x \\ y \end{bmatrix} \), we have \[ c\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ c\,y \end{bmatrix}, \] which is clearly an element of \(\mathbb{R}^2\). This axiom holds. 7. **Distributivity of scalar multiplication with respect to vector addition:** Check that \[ c(\mathbf{u}+\mathbf{v}) = c\begin{bmatrix} x+x' \\ y+y' \end{bmatrix} = \begin{bmatrix} x+x' \\ c(y+y') \end{bmatrix} = \begin{bmatrix} x+x' \\ cy + cy' \end{bmatrix}, \] and \[ c\mathbf{u}+ c\mathbf{v} = \begin{bmatrix} x \\ cy \end{bmatrix} + \begin{bmatrix} x' \\ cy' \end{bmatrix} = \begin{bmatrix} x+x' \\ cy + cy' \end{bmatrix}. \] They are equal, so this axiom holds. 8. **Distributivity of scalar multiplication with respect to field addition:** We need to check whether \[ (c+d)\begin{bmatrix} x \\ y \end{bmatrix} = c\begin{bmatrix} x \\ y \end{bmatrix} + d\begin{bmatrix} x \\ y \end{bmatrix}. \] Compute the left-hand side: \[ (c+d)\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ (c+d)y \end{bmatrix}. \] Now compute the right-hand side: \[ c\begin{bmatrix} x \\ y \end{bmatrix} + d\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ cy \end{bmatrix} + \begin{bmatrix} x \\ dy \end{bmatrix} = \begin{bmatrix} x+x \\ cy+dy \end{bmatrix} = \begin{bmatrix} 2x \\ cy+dy \end{bmatrix}. \] For these to be equal, we require that \[ \begin{bmatrix} x \\ (c+d)y \end{bmatrix} = \begin{bmatrix} 2x \\ (c+d)y \end{bmatrix}. \] This forces \( x = 2x \), which holds only if \( x = 0 \). Since \( x \) can be any real number, this axiom fails in general. 9. **Compatibility of scalar multiplication with field multiplication (Associativity of scalar multiplication):** Check that \[ c\left(d\begin{bmatrix} x \\ y \end{bmatrix}\right) = c\begin{bmatrix} x \\ dy \end{bmatrix} = \begin{bmatrix} x \\ c(dy) \end{bmatrix} = \begin{bmatrix} x \\ (cd)y \end{bmatrix}, \] which is the same as \[ (cd)\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ (cd)y \end{bmatrix}. \] This axiom holds. 10. **Identity element of scalar multiplication:** Check that \[ 1\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ 1 \cdot y \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix}. \] This axiom holds. The only axiom that fails is axiom 8, the distributivity of scalar multiplication with respect to field addition. Therefore, the given set with the specified operations is not a vector space, and axiom 8 fails.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Beyond the Answer

The set \( \mathbb{R}^{2} \) with the modified scalar multiplication does not satisfy all the vector space axioms, leading to it not being a vector space. The axiom that fails to hold is the scalar multiplication of the zero vector. If we take the scalar \( c = 0 \) and any vector \( \mathbf{u} = \begin{bmatrix} x \\ y \end{bmatrix} \), we get \( 0 \cdot \mathbf{u} = \begin{bmatrix} x \\ 0 \end{bmatrix} \), which is not the zero vector \( \begin{bmatrix} 0 \\ 0 \end{bmatrix} \) unless \( x = 0 \). Additionally, axiom (6) fails because the scalar multiplication of a vector does not necessarily yield another vector in the set when \( c = 0 \), which violates the closure property required for any vector space.

Related Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy