Question
upstudy study bank question image url

20. Let \( \boldsymbol{a}=\left(\begin{array}{c}4 \\ -1 \\ 1\end{array}\right), \boldsymbol{b}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right), \boldsymbol{c}=\left(\begin{array}{c}-1 \\ 3 \\ 2\end{array}\right), \boldsymbol{d}=\left(\begin{array}{c}-3 \\ 0 \\ 1\end{array}\right) \) Find the scalars \( \alpha, \beta \), and \( \mu \) (or show that they cannot exist) such that \( \boldsymbol{a}=\alpha \boldsymbol{b}+\beta \boldsymbol{c}+\mu \boldsymbol{d} \). \( \begin{array}{l}\text { Figure } 9.15 \text { Diagram for } \\ \text { question } 18\end{array} \)

Ask by Chavez Stuart. in Mongolia
Mar 11,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

The scalars are \( \alpha = \frac{26}{7} \), \( \beta = -\frac{11}{7} \), and \( \mu = \frac{3}{7} \).

Solution

We are given \[ \boldsymbol{a}=\begin{pmatrix}4\\-1\\1\end{pmatrix},\quad \boldsymbol{b}=\begin{pmatrix}1\\1\\1\end{pmatrix},\quad \boldsymbol{c}=\begin{pmatrix}-1\\3\\2\end{pmatrix},\quad \boldsymbol{d}=\begin{pmatrix}-3\\0\\1\end{pmatrix}, \] and we wish to find scalars \(\alpha\), \(\beta\), and \(\mu\) such that \[ \boldsymbol{a} = \alpha \boldsymbol{b} + \beta \boldsymbol{c} + \mu \boldsymbol{d}. \] This equation expands to \[ \begin{pmatrix}4\\-1\\1\end{pmatrix} = \alpha\begin{pmatrix}1\\1\\1\end{pmatrix} + \beta \begin{pmatrix}-1\\3\\2\end{pmatrix} + \mu \begin{pmatrix}-3\\0\\1\end{pmatrix}. \] Equate the corresponding components to obtain the system of equations: 1. \(x\)-component: \[ 4 = \alpha - \beta - 3\mu. \] 2. \(y\)-component: \[ -1 = \alpha + 3\beta. \] 3. \(z\)-component: \[ 1 = \alpha + 2\beta + \mu. \] ### Step 1. Express \(\alpha\) in terms of \(\beta\) from the \(y\)-component From \[ -1 = \alpha + 3\beta, \] we have: \[ \alpha = -1 - 3\beta. \] ### Step 2. Substitute \(\alpha\) into the \(x\)-component equation Substitute \(\alpha = -1 - 3\beta\) into \[ 4 = \alpha - \beta - 3\mu: \] \[ 4 = (-1 - 3\beta) - \beta - 3\mu. \] Combine like terms: \[ 4 = -1 - 4\beta - 3\mu. \] Add \(1 + 4\beta\) to both sides: \[ 4 + 1 + 4\beta = -3\mu, \] \[ 5 + 4\beta = -3\mu. \] Thus, \[ \mu = -\frac{5+4\beta}{3}. \] ### Step 3. Substitute \(\alpha\) and \(\mu\) into the \(z\)-component equation Now substitute \(\alpha = -1 - 3\beta\) and \(\mu = -\frac{5+4\beta}{3}\) into \[ 1 = \alpha + 2\beta + \mu: \] \[ 1 = (-1 - 3\beta) + 2\beta -\frac{5+4\beta}{3}. \] Simplify the expression: \[ 1 = -1 - \beta - \frac{5+4\beta}{3}. \] Multiply both sides by \(3\) to eliminate the fraction: \[ 3 = -3 - 3\beta - (5+4\beta). \] Combine like terms on the right-hand side: \[ 3 = -3 - 3\beta - 5 - 4\beta, \] \[ 3 = -8 - 7\beta. \] Add \(8\) to both sides: \[ 11 = -7\beta. \] Thus, \[ \beta = -\frac{11}{7}. \] ### Step 4. Solve for \(\alpha\) and \(\mu\) Using \(\alpha = -1 - 3\beta\): \[ \alpha = -1 - 3\left(-\frac{11}{7}\right) = -1 + \frac{33}{7}. \] Express \(-1\) as \(-\frac{7}{7}\): \[ \alpha = \frac{-7+33}{7} = \frac{26}{7}. \] Now using \(\mu = -\frac{5+4\beta}{3}\): \[ \mu = -\frac{5+4\left(-\frac{11}{7}\right)}{3} = -\frac{5 - \frac{44}{7}}{3}. \] Express \(5\) as \(\frac{35}{7}\): \[ \mu = -\frac{\frac{35-44}{7}}{3} = -\frac{-\frac{9}{7}}{3} = \frac{9}{21} = \frac{3}{7}. \] ### Final Answer The scalars are: \[ \alpha = \frac{26}{7}, \quad \beta = -\frac{11}{7}, \quad \mu = \frac{3}{7}. \]

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Mind Expander

To find the scalars \( \alpha, \beta, \) and \( \mu \) such that \[ \boldsymbol{a} = \alpha \boldsymbol{b} + \beta \boldsymbol{c} + \mu \boldsymbol{d}, \] we start by expressing this in terms of the actual vectors. Specifically, we need to solve the following equation: \[ \begin{pmatrix} 4 \\ -1 \\ 1 \end{pmatrix} = \alpha \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + \beta \begin{pmatrix} -1 \\ 3 \\ 2 \end{pmatrix} + \mu \begin{pmatrix} -3 \\ 0 \\ 1 \end{pmatrix}. \] This leads to the system of equations: 1. \( \alpha - \beta - 3\mu = 4 \) 2. \( \alpha + 3\beta = -1 \) 3. \( \alpha + 2\beta + \mu = 1 \) Now, let's solve this system step-by-step: From equation 2, we can express \( \alpha \) in terms of \( \beta \): \[ \alpha = -1 - 3\beta \tag{4} \] Substituting equation (4) into equations 1 and 3, we have: **For equation 1:** \[ (-1 - 3\beta) - \beta - 3\mu = 4 \rightarrow -1 - 4\beta - 3\mu = 4 \rightarrow -4\beta - 3\mu = 5 \tag{5} \] **For equation 3:** \[ (-1 - 3\beta) + 2\beta + \mu = 1 \rightarrow -1 - 3\beta + 2\beta + \mu = 1 \rightarrow -1 - \beta + \mu = 1 \] This simplifies to: \[ \mu - \beta = 2 \rightarrow \mu = \beta + 2 \tag{6} \] Now substitute equation (6) into equation (5): \[ -4\beta - 3(\beta + 2) = 5 \rightarrow -4\beta - 3\beta - 6 = 5 \rightarrow -7\beta = 11 \] From this, we find: \[ \beta = -\frac{11}{7}. \] Now substituting \( \beta \) back into equation (6): \[ \mu = -\frac{11}{7} + 2 = -\frac{11}{7} + \frac{14}{7} = \frac{3}{7}. \] Finally, substitute \( \beta \) back into equation (4): \[ \alpha = -1 - 3\left(-\frac{11}{7}\right) = -1 + \frac{33}{7} = -\frac{7}{7} + \frac{33}{7} = \frac{26}{7}. \] Thus, the scalars are: \[ \alpha = \frac{26}{7}, \quad \beta = -\frac{11}{7}, \quad \mu = \frac{3}{7}. \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy