20. Let \( \boldsymbol{a}=\left(\begin{array}{c}4 \\ -1 \\ 1\end{array}\right), \boldsymbol{b}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right), \boldsymbol{c}=\left(\begin{array}{c}-1 \\ 3 \\ 2\end{array}\right), \boldsymbol{d}=\left(\begin{array}{c}-3 \\ 0 \\ 1\end{array}\right) \) Find the scalars \( \alpha, \beta \), and \( \mu \) (or show that they cannot exist) such that \( \boldsymbol{a}=\alpha \boldsymbol{b}+\beta \boldsymbol{c}+\mu \boldsymbol{d} \). \( \begin{array}{l}\text { Figure } 9.15 \text { Diagram for } \\ \text { question } 18\end{array} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Mind Expander
To find the scalars \( \alpha, \beta, \) and \( \mu \) such that \[ \boldsymbol{a} = \alpha \boldsymbol{b} + \beta \boldsymbol{c} + \mu \boldsymbol{d}, \] we start by expressing this in terms of the actual vectors. Specifically, we need to solve the following equation: \[ \begin{pmatrix} 4 \\ -1 \\ 1 \end{pmatrix} = \alpha \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + \beta \begin{pmatrix} -1 \\ 3 \\ 2 \end{pmatrix} + \mu \begin{pmatrix} -3 \\ 0 \\ 1 \end{pmatrix}. \] This leads to the system of equations: 1. \( \alpha - \beta - 3\mu = 4 \) 2. \( \alpha + 3\beta = -1 \) 3. \( \alpha + 2\beta + \mu = 1 \) Now, let's solve this system step-by-step: From equation 2, we can express \( \alpha \) in terms of \( \beta \): \[ \alpha = -1 - 3\beta \tag{4} \] Substituting equation (4) into equations 1 and 3, we have: **For equation 1:** \[ (-1 - 3\beta) - \beta - 3\mu = 4 \rightarrow -1 - 4\beta - 3\mu = 4 \rightarrow -4\beta - 3\mu = 5 \tag{5} \] **For equation 3:** \[ (-1 - 3\beta) + 2\beta + \mu = 1 \rightarrow -1 - 3\beta + 2\beta + \mu = 1 \rightarrow -1 - \beta + \mu = 1 \] This simplifies to: \[ \mu - \beta = 2 \rightarrow \mu = \beta + 2 \tag{6} \] Now substitute equation (6) into equation (5): \[ -4\beta - 3(\beta + 2) = 5 \rightarrow -4\beta - 3\beta - 6 = 5 \rightarrow -7\beta = 11 \] From this, we find: \[ \beta = -\frac{11}{7}. \] Now substituting \( \beta \) back into equation (6): \[ \mu = -\frac{11}{7} + 2 = -\frac{11}{7} + \frac{14}{7} = \frac{3}{7}. \] Finally, substitute \( \beta \) back into equation (4): \[ \alpha = -1 - 3\left(-\frac{11}{7}\right) = -1 + \frac{33}{7} = -\frac{7}{7} + \frac{33}{7} = \frac{26}{7}. \] Thus, the scalars are: \[ \alpha = \frac{26}{7}, \quad \beta = -\frac{11}{7}, \quad \mu = \frac{3}{7}. \]
