Pregunta
upstudy study bank question image url

1. Simplify. \( \begin{array}{llll}\text { a) }(\sqrt{26})^{2} & \text { b) }(\sqrt{1200})^{2} & \text { c) }(\sqrt[3]{216})^{3} & \text { d) }(\sqrt[3]{1000})^{3} \\ \text { e) }(\sqrt[3]{125000})^{3} & \text { f) }(\sqrt[3]{32})^{5} & \text { g) }(\sqrt[6]{64})^{6} & \text { h) }(\sqrt[10]{1024})^{10}\end{array} \) 2. Simplify. \( \begin{array}{ll}\text { a) } \sqrt{36} \times 2^{3}-3^{2} & \text { b) } 3^{2}-\sqrt[3]{27} \\ \text { c) } 2 \sqrt{4}+3^{2}-\left(2^{3}\right)^{2} & \text { d) } 9^{2}+\sqrt{10^{2}}-13 \\ \text { e) } \sqrt{120+24}-\sqrt{130-9} & \text { f) } 6^{4} \times 6^{5} \times 6^{1} \div 6^{7} \div 6^{3}\end{array} \)

Ask by Floyd Mcfarlane. in South Africa
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

**Simplified Results:** 1. **Part 1:** - a) 26 - b) 1200 - c) 216 - d) 1000 - e) 125000 - f) \( 256\sqrt[3]{2} \) - g) 64 - h) 1024 2. **Part 2:** - a) 39 - b) 6 - c) -3 - d) 78 - e) 1 - f) 1

Solución

Calculate the value by following steps: - step0: Calculate: \(\left(\sqrt[6]{64}\right)^{6}\) - step1: Simplify the root: \(2^{6}\) - step2: Evaluate the power: \(64\) Calculate or simplify the expression \( 3^2 - \sqrt[3](27) \). Calculate the value by following steps: - step0: Calculate: \(3^{2}-\sqrt[3]{27}\) - step1: Simplify the root: \(3^{2}-3\) - step2: Evaluate the power: \(9-3\) - step3: Subtract the numbers: \(6\) Calculate or simplify the expression \( 6^4 * 6^5 * 6^1 / 6^7 / 6^3 \). Calculate the value by following steps: - step0: Calculate: \(\frac{\frac{6^{4}\times 6^{5}\times 6^{1}}{6^{7}}}{6^{3}}\) - step1: Multiply by \(a^{-n}:\) \(\frac{6^{4}\times 6^{5}\times 6\times 6^{-7}}{6^{3}}\) - step2: Multiply by \(a^{-n}:\) \(6^{4}\times 6^{5}\times 6\times 6^{-7}\times 6^{-3}\) - step3: Multiply the terms: \(6^{4+5+1-7-3}\) - step4: Calculate: \(6^{0}\) - step5: Evaluate the power: \(1\) Calculate or simplify the expression \( (\sqrt[10](1024))^10 \). Calculate the value by following steps: - step0: Calculate: \(\left(\sqrt[10]{1024}\right)^{10}\) - step1: Simplify the root: \(2^{10}\) - step2: Evaluate the power: \(1024\) Calculate or simplify the expression \( 9^2 + \sqrt(10^2) - 13 \). Calculate the value by following steps: - step0: Calculate: \(9^{2}+\sqrt{10^{2}}-13\) - step1: Simplify the root: \(9^{2}+10-13\) - step2: Evaluate the power: \(81+10-13\) - step3: Calculate: \(78\) Calculate or simplify the expression \( 2 * \sqrt(4) + 3^2 - (2^3)^2 \). Calculate the value by following steps: - step0: Calculate: \(2\sqrt{4}+3^{2}-\left(2^{3}\right)^{2}\) - step1: Multiply the exponents: \(2\sqrt{4}+3^{2}-2^{3\times 2}\) - step2: Simplify the root: \(2\times 2+3^{2}-2^{3\times 2}\) - step3: Multiply the numbers: \(2\times 2+3^{2}-2^{6}\) - step4: Multiply the numbers: \(4+3^{2}-2^{6}\) - step5: Evaluate the power: \(4+9-2^{6}\) - step6: Evaluate the power: \(4+9-64\) - step7: Calculate: \(-51\) Calculate or simplify the expression \( \sqrt(36) * 2^3 - 3^2 \). Calculate the value by following steps: - step0: Calculate: \(\sqrt{36}\times 2^{3}-3^{2}\) - step1: Simplify the root: \(6\times 2^{3}-3^{2}\) - step2: Multiply the terms: \(48-3^{2}\) - step3: Evaluate the power: \(48-9\) - step4: Subtract the numbers: \(39\) Calculate or simplify the expression \( \sqrt(120 + 24) - \sqrt(130 - 9) \). Calculate the value by following steps: - step0: Calculate: \(\sqrt{120+24}-\sqrt{130-9}\) - step1: Add the numbers: \(\sqrt{144}-\sqrt{130-9}\) - step2: Simplify the root: \(12-\sqrt{130-9}\) - step3: Subtract the numbers: \(12-\sqrt{121}\) - step4: Simplify the root: \(12-11\) - step5: Subtract the numbers: \(1\) Calculate or simplify the expression \( (\sqrt[3](216))^3 \). Calculate the value by following steps: - step0: Calculate: \(\left(\sqrt[3]{216}\right)^{3}\) - step1: Simplify the root: \(6^{3}\) - step2: Evaluate the power: \(216\) Calculate or simplify the expression \( (\sqrt(26))^2 \). Calculate the value by following steps: - step0: Calculate: \(\left(\sqrt{26}\right)^{2}\) - step1: Simplify the root: \(26\) Calculate or simplify the expression \( (\sqrt[3](1000))^3 \). Calculate the value by following steps: - step0: Calculate: \(\left(\sqrt[3]{1000}\right)^{3}\) - step1: Simplify the root: \(10^{3}\) - step2: Evaluate the power: \(1000\) Calculate or simplify the expression \( (\sqrt[3](125000))^3 \). Calculate the value by following steps: - step0: Calculate: \(\left(\sqrt[3]{125000}\right)^{3}\) - step1: Simplify the root: \(50^{3}\) Calculate or simplify the expression \( (\sqrt(1200))^2 \). Calculate the value by following steps: - step0: Calculate: \(\left(\sqrt{1200}\right)^{2}\) - step1: Simplify the root: \(\left(20\sqrt{3}\right)^{2}\) - step2: Evaluate the power: \(400\times 3\) - step3: Multiply the numbers: \(1200\) Calculate or simplify the expression \( (\sqrt[3](32))^5 \). Calculate the value by following steps: - step0: Calculate: \(\left(\sqrt[3]{32}\right)^{5}\) - step1: Simplify the root: \(\left(2\sqrt[3]{4}\right)^{5}\) - step2: Evaluate the power: \(32\times 2^{3}\sqrt[3]{2}\) - step3: Multiply the terms: \(2^{8}\sqrt[3]{2}\) - step4: Evaluate the power: \(256\sqrt[3]{2}\) Let's simplify the expressions step by step. ### Part 1: Simplifying the Expressions 1. **a)** \( (\sqrt{26})^{2} \) - Simplification: \( 26 \) 2. **b)** \( (\sqrt{1200})^{2} \) - Simplification: \( 1200 \) 3. **c)** \( (\sqrt[3]{216})^{3} \) - Simplification: \( 216 \) 4. **d)** \( (\sqrt[3]{1000})^{3} \) - Simplification: \( 1000 \) 5. **e)** \( (\sqrt[3]{125000})^{3} \) - Simplification: \( 125000 \) or \( 50^{3} \) (both are valid, but \( 125000 \) is more straightforward) 6. **f)** \( (\sqrt[3]{32})^{5} \) - Simplification: \( 256\sqrt[3]{2} \) 7. **g)** \( (\sqrt[6]{64})^{6} \) - Simplification: \( 64 \) 8. **h)** \( (\sqrt[10]{1024})^{10} \) - Simplification: \( 1024 \) ### Part 2: Further Simplifying the Expressions 1. **a)** \( \sqrt{36} \times 2^{3} - 3^{2} \) - Calculation: \( 6 \times 8 - 9 = 48 - 9 = 39 \) 2. **b)** \( 3^{2} - \sqrt[3]{27} \) - Calculation: \( 9 - 3 = 6 \) 3. **c)** \( 2 \sqrt{4} + 3^{2} - (2^{3})^{2} \) - Calculation: \( 2 \times 2 + 9 - 16 = 4 + 9 - 16 = -3 \) 4. **d)** \( 9^{2} + \sqrt{10^{2}} - 13 \) - Calculation: \( 81 + 10 - 13 = 81 + 10 - 13 = 78 \) 5. **e)** \( \sqrt{120 + 24} - \sqrt{130 - 9} \) - Calculation: \( \sqrt{144} - \sqrt{121} = 12 - 11 = 1 \) 6. **f)** \( 6^{4} \times 6^{5} \times 6^{1} \div 6^{7} \div 6^{3} \) - Calculation: \( 6^{4 + 5 + 1 - 7 - 3} = 6^{0} = 1 \) ### Summary of Results **Part 1 Results:** - a) 26 - b) 1200 - c) 216 - d) 1000 - e) 125000 - f) \( 256\sqrt[3]{2} \) - g) 64 - h) 1024 **Part 2 Results:** - a) 39 - b) 6 - c) -3 - d) 78 - e) 1 - f) 1

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

The outcomes for the first set of simplifications are straightforward as they directly unravel the powers of roots. For \( (\sqrt{26})^{2} \), you simply get 26. Similarly, \( (\sqrt{1200})^{2} \) equals 1200, and in the case of \( (\sqrt[3]{216})^{3} \), you perfectly get the number 216. You’ll find that, for any \( (\sqrt[x]{y})^{x} \), it simplifies to y. On the other hand, simplifying \( \sqrt{36} \times 2^{3}-3^{2} \) gives you an elegant 24, while \( 3^{2}-\sqrt[3]{27} \) resolves to a crisp 0! It’s all about combining things right; for example, the expression \( 6^{4} \times 6^{5} \times 6^{1} \div 6^{7} \div 6^{3} \) simplifies down to a neat \( 6^{0} \), which equals 1. Embrace the power of numbers!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad