Question
upstudy study bank question image url

1. Una partícula recorre primero \( \left(5 t^{2}+4 t+7\right) \) metros, posteriormente \( \left(t^{2}-4\right) \) metros y finalmente \( (-5 t+3) \) metros. ¿Cuál es la distancia total de su recorrido?

Ask by Parry Chavez. in Mexico
Feb 21,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

La distancia total recorrida por la partícula es \( 6t^2 - t + 6 \) metros.

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Answered by UpStudy AI and reviewed by a Professional Tutor

The Deep Dive

Para encontrar la distancia total del recorrido de la partícula, debes sumar las expresiones que representan las diferentes distancias recorridas. Comencemos sumando: 1. La primera distancia es \( 5t^2 + 4t + 7 \) metros. 2. La segunda distancia es \( t^2 - 4 \) metros. 3. La tercera distancia es \( -5t + 3 \) metros. La distancia total \( D(t) \) es: \[ D(t) = (5t^2 + 4t + 7) + (t^2 - 4) + (-5t + 3) \] Ahora, combinamos los términos semejantes: \[ D(t) = (5t^2 + t^2) + (4t - 5t) + (7 - 4 + 3) \] \[ D(t) = 6t^2 - t + 6 \] Entonces, la distancia total recorrida por la partícula es \( 6t^2 - t + 6 \) metros.

Related Questions

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy