Answer
The natural domain of \( f(x) = \sqrt{\frac{3x(1-2x)}{(x-2)(x+3)^2}} \) is all real numbers \( x \) such that \( x < -3 \), \( -3 < x \leq 0 \), or \( \frac{1}{2} \leq x < 2 \).
Solution
1. Rewrite the function and note that the square root requires the radicand to be non‐negative and the denominator to be nonzero. We have
\[
f(x)=\sqrt{\frac{3x(1-2x)}{(x-2)(x+3)^2}}.
\]
Since \(3>0\), the sign of the expression under the square root is determined by
\[
\frac{x(1-2x)}{(x-2)(x+3)^2}.
\]
Thus, we require
\[
\frac{x(1-2x)}{(x-2)(x+3)^2} \ge 0.
\]
Also, the denominator must be nonzero:
\[
(x-2)(x+3)^2 \neq 0.
\]
2. Find the zeros of the numerator and the denominator.
- Numerator: \(x(1-2x)=0\) when
\[
x=0 \quad \text{or} \quad 1-2x=0\Longrightarrow x=\frac{1}{2}.
\]
- Denominator:
\[
x-2=0\Longrightarrow x=2, \qquad (x+3)^2=0\Longrightarrow x=-3.
\]
Note that \(x=-3\) and \(x=2\) must be excluded.
3. List all critical points:
\[
x=-3,\; 0,\; \frac{1}{2},\; 2.
\]
These divide the real line into the intervals:
\[
(-\infty,-3),\quad (-3,0),\quad (0,\tfrac{1}{2}),\quad (\tfrac{1}{2},2),\quad (2,\infty).
\]
4. Determine the sign of
\[
\frac{x(1-2x)}{(x-2)(x+3)^2}
\]
on each interval. Note that \((x+3)^2\) is always positive (except at \(x=-3\), where it is zero).
- **Interval \((-\infty,-3)\):**
Choose \(x=-4\). Then:
\[
x=-4\ (<0),\quad 1-2(-4)=1+8=9\ (>0),\quad x-2=-4-2=-6\ (<0).
\]
The numerator \(x(1-2x)\) is \((-\cdot +)= -\) and the factor \(x-2\) in the denominator is negative, so
\[
\frac{(-)}{(-)} = +.
\]
- **Interval \((-3,0)\):**
Choose \(x=-1\). Then:
\[
x=-1\ (<0),\quad 1-2(-1)=1+2=3\ (>0),\quad x-2=-1-2=-3\ (<0).
\]
The numerator is negative and the factor \(x-2\) is negative, yielding
\[
\frac{(-)}{(-)} = +.
\]
- **Interval \((0,\tfrac{1}{2})\):**
Choose \(x=0.25\). Then:
\[
x=0.25\ (>0),\quad 1-2(0.25)=1-0.5=0.5\ (>0),\quad x-2=0.25-2=-1.75\ (<0).
\]
The numerator is positive while the factor \(x-2\) is negative, so
\[
\frac{(+)}{(-)} = -.
\]
- **Interval \((\tfrac{1}{2},2)\):**
Choose \(x=1\). Then:
\[
x=1\ (>0),\quad 1-2(1)=1-2=-1\ (<0),\quad x-2=1-2=-1\ (<0).
\]
The numerator is \( (+)\cdot(-)= -\) and the denominator is negative, so
\[
\frac{(-)}{(-)} = +.
\]
- **Interval \((2,\infty)\):**
Choose \(x=3\). Then:
\[
x=3\ (>0),\quad 1-2(3)=1-6=-5\ (<0),\quad x-2=3-2=1\ (>0).
\]
The numerator is negative and the denominator is positive, giving
\[
\frac{(-)}{(+)} = -.
\]
5. Include the points where the numerator is zero (making the fraction zero) provided the denominator is nonzero:
- At \(x=0\): The numerator is \(0\) and the denominator equals \((0-2)(0+3)^2 \neq 0\); include \(x=0\).
- At \(x=\frac{1}{2}\): The numerator is \(0\) and the denominator \((\frac{1}{2}-2)(\frac{1}{2}+3)^2 \neq 0\); include \(x=\frac{1}{2}\).
6. Combine the intervals where the expression under the square root is nonnegative:
- From the sign analysis, the expression is nonnegative on
\[
(-\infty,-3) \quad \text{and} \quad (-3,0] \quad \text{and} \quad \left[\frac{1}{2},2\right).
\]
- Recall \(x=-3\) and \(x=2\) are excluded due to the denominator being zero.
7. Therefore, the natural domain of \( f(x) \) is
\[
(-\infty,-3)\cup (-3,0]\cup \left[\frac{1}{2},2\right).
\]
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution