Question
(4) \( \lim _{x \rightarrow 1}^{\text {Resuefue por }}\left(\frac{x^{2}-2 x+1}{x-1}\right)= \)
Ask by King Daniels. in Mexico
Feb 19,2025
Upstudy AI Solution
Tutor-Verified Answer
Answer
La limitante es 0.
Solution
Calculate or simplify the expression \( \lim_{x\rightarrow 1} \left(\frac{x^{2}-2x+1}{x-1}\right) \).
Evaluate the limit by following steps:
- step0: Evaluate using transformations:
\(\lim _{x\rightarrow 1}\left(\frac{x^{2}-2x+1}{x-1}\right)\)
- step1: Reduce the fraction:
\(\lim _{x\rightarrow 1}\left(x-1\right)\)
- step2: Rewrite the expression:
\(\lim _{x\rightarrow 1}\left(x\right)+\lim _{x\rightarrow 1}\left(-1\right)\)
- step3: Calculate:
\(1-1\)
- step4: Calculate:
\(0\)
La limitante de la expresión \( \frac{x^{2}-2x+1}{x-1} \) cuando \( x \) se acerca a 1 es 0.
Answered by UpStudy AI and reviewed by a Professional Tutor
Like
error msg


Extra Insights
Cuando \( x \) se acerca a 1, la expresión \( \frac{x^{2}-2x+1}{x-1} \) se convierte en una forma indeterminada \( \frac{0}{0} \). Para resolverlo, primero simplificamos el numerador, que se puede factorizar como \( (x-1)^2 \). Entonces, nuestra expresión es: \[ \frac{(x-1)^2}{x-1} = x-1 \quad \text{(para \( x \neq 1 \))} \] Ahora, al aplicar el límite: \[ \lim_{x \rightarrow 1} (x-1) = 1 - 1 = 0 \] Entonces, \( \lim _{x \rightarrow 1} \left(\frac{x^{2}-2x+1}{x-1}\right) = 0 \).