Question
upstudy study bank question image url

(4) \( \lim _{x \rightarrow 1}^{\text {Resuefue por }}\left(\frac{x^{2}-2 x+1}{x-1}\right)= \)

Ask by King Daniels. in Mexico
Feb 19,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

La limitante es 0.

Solution

Calculate or simplify the expression \( \lim_{x\rightarrow 1} \left(\frac{x^{2}-2x+1}{x-1}\right) \). Evaluate the limit by following steps: - step0: Evaluate using transformations: \(\lim _{x\rightarrow 1}\left(\frac{x^{2}-2x+1}{x-1}\right)\) - step1: Reduce the fraction: \(\lim _{x\rightarrow 1}\left(x-1\right)\) - step2: Rewrite the expression: \(\lim _{x\rightarrow 1}\left(x\right)+\lim _{x\rightarrow 1}\left(-1\right)\) - step3: Calculate: \(1-1\) - step4: Calculate: \(0\) La limitante de la expresión \( \frac{x^{2}-2x+1}{x-1} \) cuando \( x \) se acerca a 1 es 0.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Extra Insights

Cuando \( x \) se acerca a 1, la expresión \( \frac{x^{2}-2x+1}{x-1} \) se convierte en una forma indeterminada \( \frac{0}{0} \). Para resolverlo, primero simplificamos el numerador, que se puede factorizar como \( (x-1)^2 \). Entonces, nuestra expresión es: \[ \frac{(x-1)^2}{x-1} = x-1 \quad \text{(para \( x \neq 1 \))} \] Ahora, al aplicar el límite: \[ \lim_{x \rightarrow 1} (x-1) = 1 - 1 = 0 \] Entonces, \( \lim _{x \rightarrow 1} \left(\frac{x^{2}-2x+1}{x-1}\right) = 0 \).

Related Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy