Answer
**Summary of Results:**
1. **Function \( f(x) = \left(\frac{1}{3}\right)^{x} \)**
- **Domain**: All real numbers (\( (-\infty, \infty) \))
- **Range**: Positive real numbers (\( (0, \infty) \))
- **\( f(x) > 0 \)**: For all real \( x \)
- **Three Points**: \( (0, 1) \), \( (1, \frac{1}{3}) \), \( (-1, 3) \)
2. **Transformed Functions:**
- **\( g(x) \)**: \( g(x) = \left(\frac{1}{3}\right)^{x} - 3 \)
- **\( h(x) \)**: \( h(x) = \left(\frac{1}{3}\right)^{x + 3} \)
- **\( k(x) \)**: \( k(x) = \left(\frac{1}{3}\right)^{x - 3} + 2 \)
3. **Properties of Transformed Functions:**
- **\( g(x) \)**
- **Domain**: All real numbers (\( (-\infty, \infty) \))
- **Range**: \( (-3, \infty) \)
- **\( h(x) \)**
- **Domain**: All real numbers (\( (-\infty, \infty) \))
- **Range**: \( (0, \frac{1}{27}) \)
- **\( k(x) \)**
- **Domain**: All real numbers (\( (-\infty, \infty) \))
- **Range**: \( (2, \infty) \)
4. **Asymptotes:**
- All functions \( f, g, h, k \) have a horizontal asymptote at \( y = 0 \).
**Conclusion:**
The function \( f(x) = \left(\frac{1}{3}\right)^{x} \) is an exponential function with a domain of all real numbers and a range of positive real numbers. When transformed, the functions \( g, h, \) and \( k \) maintain the exponential nature but shift vertically and horizontally, affecting their ranges and positions on the graph. All transformed functions share a common horizontal asymptote at \( y = 0 \).
Solution
Function by following steps:
- step0: Find the y-intercept:
\(g\left(x\right)=3^{-x}-3\)
- step1: Set \(x\)=0\(:\)
\(g\left(0\right)=3^{-0}-3\)
- step2: Evaluate:
\(g\left(0\right)=3^{0}-3\)
- step3: Evaluate the power:
\(g\left(0\right)=1-3\)
- step4: Subtract the numbers:
\(g\left(0\right)=-2\)
Analyze the y intercept of the function \( k(x)=(\frac{1}{3})^{x-3}+2 \)
Function by following steps:
- step0: Find the y-intercept:
\(k\left(x\right)=3^{-x+3}+2\)
- step1: Set \(x\)=0\(:\)
\(k\left(0\right)=3^{-0+3}+2\)
- step2: Evaluate:
\(k\left(0\right)=3^{0+3}+2\)
- step3: Simplify:
\(k\left(0\right)=29\)
Analyze the y intercept of the function \( f(x)=(\frac{1}{3})^{x} \)
Function by following steps:
- step0: Find the y-intercept:
\(f\left(x\right)=\left(\frac{1}{3}\right)^{x}\)
- step1: Set \(x\)=0\(:\)
\(f\left(0\right)=\left(\frac{1}{3}\right)^{0}\)
- step2: Evaluate the power:
\(f\left(0\right)=1\)
Analyze the y intercept of the function \( h(x)=(\frac{1}{3})^{x+3} \)
Function by following steps:
- step0: Find the y-intercept:
\(h\left(x\right)=\left(\frac{1}{3}\right)^{x+3}\)
- step1: Set \(x\)=0\(:\)
\(h\left(0\right)=\left(\frac{1}{3}\right)^{0+3}\)
- step2: Remove 0:
\(h\left(0\right)=\left(\frac{1}{3}\right)^{3}\)
- step3: Simplify:
\(h\left(0\right)=\frac{1}{27}\)
Find the horizontal asymptotes of \( f(x)=(\frac{1}{3})^{x} \).
Function by following steps:
- step0: Find the horizontal asymptotes:
\(f\left(x\right)=\left(\frac{1}{3}\right)^{x}\)
- step1: Find the horizontal asymptotes:
\(\textrm{No horizontal asymptotes}\)
Find the horizontal asymptotes of \( k(x)=(\frac{1}{3})^{x-3}+2 \).
Function by following steps:
- step0: Find the horizontal asymptotes:
\(k\left(x\right)=3^{-x+3}+2\)
- step1: Find the horizontal asymptotes:
\(\textrm{No horizontal asymptotes}\)
Find the horizontal asymptotes of \( h(x)=(\frac{1}{3})^{x+3} \).
Function by following steps:
- step0: Find the horizontal asymptotes:
\(h\left(x\right)=\left(\frac{1}{3}\right)^{x+3}\)
- step1: Find the horizontal asymptotes:
\(\textrm{No horizontal asymptotes}\)
Find the horizontal asymptotes of \( g(x)=(\frac{1}{3})^{x}-3 \).
Function by following steps:
- step0: Find the horizontal asymptotes:
\(g\left(x\right)=3^{-x}-3\)
- step1: Find the horizontal asymptotes:
\(\textrm{No horizontal asymptotes}\)
Let's solve the problem step by step.
### 4. Sketch Graph of \( f(x) = \left(\frac{1}{3}\right)^{x} \)
1. **Domain and Range of \( f \)**:
- The function \( f(x) = \left(\frac{1}{3}\right)^{x} \) is defined for all real numbers \( x \).
- As \( x \) approaches infinity, \( f(x) \) approaches 0 but never reaches it. As \( x \) approaches negative infinity, \( f(x) \) approaches infinity.
- Therefore, the domain is \( (-\infty, \infty) \) and the range is \( (0, \infty) \).
2. **Values of \( x \) for which \( f(x) > 0 \)**:
- Since \( f(x) = \left(\frac{1}{3}\right)^{x} \) is an exponential function, it is always positive for all real \( x \).
- Thus, \( f(x) > 0 \) for all \( x \in (-\infty, \infty) \).
3. **Coordinates of Three Points on \( f \)**:
- Let's calculate three points:
- \( f(0) = \left(\frac{1}{3}\right)^{0} = 1 \) → Point: \( (0, 1) \)
- \( f(1) = \left(\frac{1}{3}\right)^{1} = \frac{1}{3} \) → Point: \( (1, \frac{1}{3}) \)
- \( f(-1) = \left(\frac{1}{3}\right)^{-1} = 3 \) → Point: \( (-1, 3) \)
4. **Equation of \( g \)** (moved 3 units down):
- The equation of \( g \) is \( g(x) = f(x) - 3 = \left(\frac{1}{3}\right)^{x} - 3 \).
5. **Equation of \( h \)** (moved 3 units left):
- The equation of \( h \) is \( h(x) = f(x + 3) = \left(\frac{1}{3}\right)^{x + 3} = \left(\frac{1}{3}\right)^{x} \cdot \left(\frac{1}{3}\right)^{3} = \frac{1}{27} \left(\frac{1}{3}\right)^{x} \).
6. **Equation of \( k \)** (moved 2 units upwards and 3 units to the right):
- The equation of \( k \) is \( k(x) = f(x - 3) + 2 = \left(\frac{1}{3}\right)^{x - 3} + 2 \).
7. **Domain and Range of \( g \)**:
- The domain of \( g \) is the same as \( f \): \( (-\infty, \infty) \).
- The range of \( g \) is \( (-3, \infty) \) since it shifts down by 3.
8. **Domain and Range of \( h \)**:
- The domain of \( h \) is \( (-\infty, \infty) \).
- The range of \( h \) is \( (0, \frac{1}{27}) \) since it is a scaled version of \( f \).
9. **Domain and Range of \( k \)**:
- The domain of \( k \) is \( (-\infty, \infty) \).
- The range of \( k \) is \( (2, \infty) \) since it shifts up by 2.
10. **Asymptotes of \( f, g, h, \) and \( k \)**:
- All functions have a horizontal asymptote at \( y = 0 \) since they approach 0 as \( x \) approaches infinity.
### Summary of Results:
- **Domain of \( f \)**: \( (-\infty, \infty) \)
- **Range of \( f \)**: \( (0, \infty) \)
- **Values of \( x \) for \( f(x) > 0 \)**: All \( x \in (-\infty, \infty) \)
- **Three Points on \( f \)**: \( (0, 1), (1, \frac{1}{3}), (-1, 3) \)
- **Equation of \( g \)**: \( g(x) = \left(\frac{1}{3}\right)^{x} - 3 \)
- **Equation of \( h \)**: \( h(x) = \left(\frac{1}{3}\right)^{x + 3} \)
- **Equation of \( k \)**: \( k(x) = \left(\frac{1}{3}\right)^{x - 3} + 2 \)
- **Domain of \( g \)**: \( (-\infty, \infty) \)
- **Range of \( g \)**: \( (-3, \infty) \)
- **Domain of \( h \)**: \( (-\infty, \infty) \)
- **Range of \( h \)**: \( (0, \frac{1}{27}) \)
- **Domain of \( k \)**: \( (-\infty, \infty) \)
- **Range of \( k \)**: \( (2, \infty) \)
- **Asymptotes**: All functions have a horizontal asymptote at \( y = 0 \).
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution