Pregunta
upstudy study bank question image url

4. Draw a sketch graph of \( f(x)=\left(\frac{1}{3}\right)^{x} \). 4.1 Give the domain and range of \( f \). 4.2 For which values of \( x \) is \( f(x)>0 \) ? 4.3 Give the coordinates of any three points on \( f \). 4.4 Give the equation of \( g \) if \( g \) is formed when the graph of \( f \) is moved 3 units down. 4.5 Give the equation of \( h \) if \( h \) is formed when the graph of \( f \) is moved 3 units left. 4.6 Give the equation of \( k \) if \( k \) is formed when the graph of \( f \) is moved 2 units upwards and 3 un to the right. 4.7 Give the domain and range of \( g \). 4.8 Give the domain and range of \( h \). 4.9 Give the domain and range of \( k \). 4.10 Give the asymptotes of \( f, g, h \) and \( k \).

Ask by Higgins Mathis. in South Africa
Feb 19,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

**Summary of Results:** 1. **Function \( f(x) = \left(\frac{1}{3}\right)^{x} \)** - **Domain**: All real numbers (\( (-\infty, \infty) \)) - **Range**: Positive real numbers (\( (0, \infty) \)) - **\( f(x) > 0 \)**: For all real \( x \) - **Three Points**: \( (0, 1) \), \( (1, \frac{1}{3}) \), \( (-1, 3) \) 2. **Transformed Functions:** - **\( g(x) \)**: \( g(x) = \left(\frac{1}{3}\right)^{x} - 3 \) - **\( h(x) \)**: \( h(x) = \left(\frac{1}{3}\right)^{x + 3} \) - **\( k(x) \)**: \( k(x) = \left(\frac{1}{3}\right)^{x - 3} + 2 \) 3. **Properties of Transformed Functions:** - **\( g(x) \)** - **Domain**: All real numbers (\( (-\infty, \infty) \)) - **Range**: \( (-3, \infty) \) - **\( h(x) \)** - **Domain**: All real numbers (\( (-\infty, \infty) \)) - **Range**: \( (0, \frac{1}{27}) \) - **\( k(x) \)** - **Domain**: All real numbers (\( (-\infty, \infty) \)) - **Range**: \( (2, \infty) \) 4. **Asymptotes:** - All functions \( f, g, h, k \) have a horizontal asymptote at \( y = 0 \). **Conclusion:** The function \( f(x) = \left(\frac{1}{3}\right)^{x} \) is an exponential function with a domain of all real numbers and a range of positive real numbers. When transformed, the functions \( g, h, \) and \( k \) maintain the exponential nature but shift vertically and horizontally, affecting their ranges and positions on the graph. All transformed functions share a common horizontal asymptote at \( y = 0 \).

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Beyond the Answer

To sketch the graph of \( f(x) = \left(\frac{1}{3}\right)^{x} \), imagine a smoothly descending curve that approaches the x-axis but never quite touches it. As x increases, the function values decrease, showcasing an exponential decay. The domain of \( f \) is all real numbers, while the range is all positive real numbers (\( f(x) > 0 \)). For \( f(x) > 0 \), all x-values suffice, reinforcing that this function never reaches or dips below zero. Three points on \( f \) could be (0, 1), (1, \(\frac{1}{3}\)), and (-1, 3). If we move \( f \) down by 3 units to form \( g \), the equation becomes \( g(x) = \left(\frac{1}{3}\right)^{x} - 3 \). For \( h \), moving \( f \) left by 3 units results in \( h(x) = \left(\frac{1}{3}\right)^{(x + 3)} \). The equation for \( k \), with shifts of 2 units up and 3 units to the right, would be \( k(x) = \left(\frac{1}{3}\right)^{(x - 3)} + 2 \). The domain of \( g \) and \( h \) remains all real numbers, while the range of \( g \) is \( (-3, \infty) \), the same for \( h \) as this function only shifts left without affecting its positive nature. The range of \( k \), however, is \( (2, \infty) \). For asymptotes, they are all \( y = 0 \) for \( f \), \( g \) and \( h \); for \( k \), the asymptote shifts to \( y = 2 \).

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad