Answer
Here are the simplified results and exponential forms:
1. **Expression:**
\[
\frac{4^{x+2} \cdot 8^{x-1}}{2^{x-3} \cdot 16^{x}} = 16
\]
2. **Expression:**
\[
\frac{15^{n+2} \cdot 45^{1-n}}{3^{3-n}} = 375
\]
3. **Expression:**
\[
\frac{2^{x}+2^{x+1}}{2^{x}-2^{x+2}} = -1
\]
4. **Expression:**
\[
\frac{25^{x+1} \cdot 6}{10^{x-1} \cdot 15^{x}} = \frac{125}{2^{-2+x} \times 3^{x-1}}
\]
5. **Expression:**
\[
\frac{6^{n+3} \cdot 2^{n-1}}{12^{n+2}} = \frac{3}{4}
\]
6. **Expression:**
\[
\frac{2^{4 x+1} \cdot 9^{x} \cdot 6^{2 x-1}}{12^{3 x} \cdot 3^{x}} = \frac{1}{3}
\]
**Conversions to Exponential Form:**
1. **Expression:**
\[
\sqrt{x} = x^{\frac{1}{2}}
\]
2. **Expression:**
\[
\sqrt[3]{x^{2}} = x^{\frac{2}{3}}
\]
Solution
Simplify the expression by following steps:
- step0: Solution:
\(\sqrt[3]{x^{2}}\)
Calculate or simplify the expression \( \frac{15^{n+2} \cdot 45^{1-n}}{3^{3-n}} \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{15^{n+2}\times 45^{1-n}}{3^{3-n}}\)
- step1: Factor the expression:
\(\frac{3^{n+2}\times 5^{n+2}\times 45^{1-n}}{3^{-n+3}}\)
- step2: Reduce the fraction:
\(3^{2n-1}\times 5^{n+2}\times 45^{1-n}\)
- step3: Rewrite the expression:
\(3\times 5^{1-n}\times 5^{n+2}\)
- step4: Multiply the terms:
\(3\times 5^{3}\)
- step5: Multiply the terms:
\(375\)
Calculate or simplify the expression \( \frac{25^{x+1} \cdot 6}{10^{x-1} \cdot 15^{x}} \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{25^{x+1}\times 6}{10^{x-1}\times 15^{x}}\)
- step1: Factor the expression:
\(\frac{5^{2x+2}\times 6}{5^{x-1}\times 2^{x-1}\times 15^{x}}\)
- step2: Reduce the fraction:
\(\frac{5^{x+3}\times 6}{2^{x-1}\times 15^{x}}\)
- step3: Factor the expression:
\(\frac{5^{x+3}\times 6}{2^{x-1}\times 5^{x}\times 3^{x}}\)
- step4: Reduce the fraction:
\(\frac{5^{3}\times 6}{2^{x-1}\times 3^{x}}\)
- step5: Factor the expression:
\(\frac{5^{3}\times 6}{2^{-1+x}\times 3^{x}}\)
- step6: Calculate:
\(\frac{750}{2^{-1+x}\times 3^{x}}\)
- step7: Calculate:
\(\frac{125\times 6}{2^{-2+x}\times 3^{x-1}\times 6}\)
- step8: Reduce the fraction:
\(\frac{125}{2^{-2+x}\times 3^{x-1}}\)
Calculate or simplify the expression \( \frac{2^{x}+2^{x+1}}{2^{x}-2^{x+2}} \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{2^{x}+2^{x+1}}{2^{x}-2^{x+2}}\)
- step1: Add the terms:
\(\frac{3\times 2^{x}}{2^{x}-2^{x+2}}\)
- step2: Subtract the terms:
\(\frac{3\times 2^{x}}{-3\times 2^{x}}\)
- step3: Rewrite the fraction:
\(-\frac{3\times 2^{x}}{3\times 2^{x}}\)
- step4: Reduce the fraction:
\(-1\)
Calculate or simplify the expression \( \frac{4^{x+2} \cdot 8^{x-1}}{2^{x-3} \cdot 16^{x}} \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{4^{x+2}\times 8^{x-1}}{2^{x-3}\times 16^{x}}\)
- step1: Multiply:
\(\frac{2^{5x+1}}{2^{x-3}\times 16^{x}}\)
- step2: Multiply:
\(\frac{2^{5x+1}}{2^{5x-3}}\)
- step3: Divide the numbers:
\(2^{5x+1-\left(5x-3\right)}\)
- step4: Subtract the terms:
\(2^{4}\)
- step5: Evaluate the power:
\(16\)
Calculate or simplify the expression \( \frac{6^{n+3} \cdot 2^{n-1}}{12^{n+2}} \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{6^{n+3}\times 2^{n-1}}{12^{n+2}}\)
- step1: Factor the expression:
\(\frac{6^{n+3}\times 2^{n-1}}{6^{n+2}\times 2^{n+2}}\)
- step2: Reduce the fraction:
\(\frac{6}{2^{3}}\)
- step3: Factor the expression:
\(\frac{2\times 3}{2^{3}}\)
- step4: Reduce the fraction:
\(\frac{3}{2^{2}}\)
- step5: Evaluate the power:
\(\frac{3}{4}\)
Calculate or simplify the expression \( \sqrt{x} \).
Simplify the expression by following steps:
- step0: Solution:
\(\sqrt{x}\)
Calculate or simplify the expression \( \frac{2^{4 x+1} \cdot 9^{x} \cdot 6^{2 x-1}}{12^{3 x} \cdot 3^{x}} \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{2^{4x+1}\times 9^{x}\times 6^{2x-1}}{12^{3x}\times 3^{x}}\)
- step1: Factor the expression:
\(\frac{2^{4x+1}\times 9^{x}\times 6^{2x-1}}{2^{4x}\times 108^{x}\times 3^{x}}\)
- step2: Reduce the fraction:
\(\frac{2\times 9^{x}\times 6^{2x-1}}{108^{x}\times 3^{x}}\)
- step3: Factor the expression:
\(\frac{2\times 9^{x}\times 6^{2x-1}}{2^{2x}\times 27^{x}\times 3^{x}}\)
- step4: Divide the numbers:
\(\frac{2^{1-2x}\times 9^{x}\times 6^{2x-1}}{27^{x}\times 3^{x}}\)
- step5: Factor the expression:
\(\frac{2^{1-2x}\times 3^{2x}\times 6^{2x-1}}{3^{3x}\times 3^{x}}\)
- step6: Reduce the fraction:
\(\frac{2^{1-2x}\times 6^{2x-1}}{3^{x}\times 3^{x}}\)
- step7: Factor the expression:
\(\frac{2^{1-2x}\times 3^{2x-1}\times 2^{2x-1}}{3^{x}\times 3^{x}}\)
- step8: Reduce the fraction:
\(\frac{2^{1-2x}\times 2^{2x-1}}{3}\)
- step9: Calculate:
\(\frac{1}{3}\)
Here are the simplified results for each expression and the conversions to exponential form:
### Simplifications
1. **Expression:**
\[
\frac{4^{x+2} \cdot 8^{x-1}}{2^{x-3} \cdot 16^{x}}
\]
**Simplified Result:**
\[
16
\]
2. **Expression:**
\[
\frac{15^{n+2} \cdot 45^{1-n}}{3^{3-n}}
\]
**Simplified Result:**
\[
375
\]
3. **Expression:**
\[
\frac{2^{x}+2^{x+1}}{2^{x}-2^{x+2}}
\]
**Simplified Result:**
\[
-1
\]
4. **Expression:**
\[
\frac{25^{x+1} \cdot 6}{10^{x-1} \cdot 15^{x}}
\]
**Simplified Result:**
\[
\frac{125}{2^{-2+x} \times 3^{x-1}}
\]
5. **Expression:**
\[
\frac{6^{n+3} \cdot 2^{n-1}}{12^{n+2}}
\]
**Simplified Result:**
\[
\frac{3}{4}
\]
6. **Expression:**
\[
\frac{2^{4 x+1} \cdot 9^{x} \cdot 6^{2 x-1}}{12^{3 x} \cdot 3^{x}}
\]
**Simplified Result:**
\[
\frac{1}{3}
\]
### Conversions to Exponential Form
1. **Expression:**
\[
\sqrt{x}
\]
**Exponential Form:**
\[
x^{\frac{1}{2}}
\]
2. **Expression:**
\[
\sqrt[3]{x^{2}}
\]
**Exponential Form:**
\[
x^{\frac{2}{3}}
\]
If you have any further questions or need additional assistance, feel free to ask!
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution