Question
upstudy study bank question image url

1.1 Simplify \( 1.1 .1 \frac{4^{x+2} \cdot 8^{x-1}}{2^{x-3} \cdot 16^{x}} \) 1.1.2. \( \frac{15^{n+2} \cdot 45^{1-n}}{3^{3-n}} \) \( 11.3 \frac{2^{x}+2^{x+1}}{2^{x}-2^{x+2}} \) 1.1.4 \( \frac{25^{x+1} \cdot 6}{10^{x-1} \cdot 15^{x}} \) \( 1.1 .5 \quad \frac{6^{n+3} \cdot 2^{n-1}}{12^{n+2}} \) 1.1.6 \( \frac{2^{4 x+1} \cdot 9^{x} \cdot 6^{2 x-1}}{12^{3 x} \cdot 3^{x}} \) 1.2 Convert the following into exponential form 1.2.1 a. \( \sqrt{x} \) b. \( \sqrt[3]{x^{2}} \)

Ask by Mejia Turner. in South Africa
Feb 20,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

Here are the simplified results and exponential forms: 1. **Expression:** \[ \frac{4^{x+2} \cdot 8^{x-1}}{2^{x-3} \cdot 16^{x}} = 16 \] 2. **Expression:** \[ \frac{15^{n+2} \cdot 45^{1-n}}{3^{3-n}} = 375 \] 3. **Expression:** \[ \frac{2^{x}+2^{x+1}}{2^{x}-2^{x+2}} = -1 \] 4. **Expression:** \[ \frac{25^{x+1} \cdot 6}{10^{x-1} \cdot 15^{x}} = \frac{125}{2^{-2+x} \times 3^{x-1}} \] 5. **Expression:** \[ \frac{6^{n+3} \cdot 2^{n-1}}{12^{n+2}} = \frac{3}{4} \] 6. **Expression:** \[ \frac{2^{4 x+1} \cdot 9^{x} \cdot 6^{2 x-1}}{12^{3 x} \cdot 3^{x}} = \frac{1}{3} \] **Conversions to Exponential Form:** 1. **Expression:** \[ \sqrt{x} = x^{\frac{1}{2}} \] 2. **Expression:** \[ \sqrt[3]{x^{2}} = x^{\frac{2}{3}} \]

Solution

Simplify the expression by following steps: - step0: Solution: \(\sqrt[3]{x^{2}}\) Calculate or simplify the expression \( \frac{15^{n+2} \cdot 45^{1-n}}{3^{3-n}} \). Simplify the expression by following steps: - step0: Solution: \(\frac{15^{n+2}\times 45^{1-n}}{3^{3-n}}\) - step1: Factor the expression: \(\frac{3^{n+2}\times 5^{n+2}\times 45^{1-n}}{3^{-n+3}}\) - step2: Reduce the fraction: \(3^{2n-1}\times 5^{n+2}\times 45^{1-n}\) - step3: Rewrite the expression: \(3\times 5^{1-n}\times 5^{n+2}\) - step4: Multiply the terms: \(3\times 5^{3}\) - step5: Multiply the terms: \(375\) Calculate or simplify the expression \( \frac{25^{x+1} \cdot 6}{10^{x-1} \cdot 15^{x}} \). Simplify the expression by following steps: - step0: Solution: \(\frac{25^{x+1}\times 6}{10^{x-1}\times 15^{x}}\) - step1: Factor the expression: \(\frac{5^{2x+2}\times 6}{5^{x-1}\times 2^{x-1}\times 15^{x}}\) - step2: Reduce the fraction: \(\frac{5^{x+3}\times 6}{2^{x-1}\times 15^{x}}\) - step3: Factor the expression: \(\frac{5^{x+3}\times 6}{2^{x-1}\times 5^{x}\times 3^{x}}\) - step4: Reduce the fraction: \(\frac{5^{3}\times 6}{2^{x-1}\times 3^{x}}\) - step5: Factor the expression: \(\frac{5^{3}\times 6}{2^{-1+x}\times 3^{x}}\) - step6: Calculate: \(\frac{750}{2^{-1+x}\times 3^{x}}\) - step7: Calculate: \(\frac{125\times 6}{2^{-2+x}\times 3^{x-1}\times 6}\) - step8: Reduce the fraction: \(\frac{125}{2^{-2+x}\times 3^{x-1}}\) Calculate or simplify the expression \( \frac{2^{x}+2^{x+1}}{2^{x}-2^{x+2}} \). Simplify the expression by following steps: - step0: Solution: \(\frac{2^{x}+2^{x+1}}{2^{x}-2^{x+2}}\) - step1: Add the terms: \(\frac{3\times 2^{x}}{2^{x}-2^{x+2}}\) - step2: Subtract the terms: \(\frac{3\times 2^{x}}{-3\times 2^{x}}\) - step3: Rewrite the fraction: \(-\frac{3\times 2^{x}}{3\times 2^{x}}\) - step4: Reduce the fraction: \(-1\) Calculate or simplify the expression \( \frac{4^{x+2} \cdot 8^{x-1}}{2^{x-3} \cdot 16^{x}} \). Simplify the expression by following steps: - step0: Solution: \(\frac{4^{x+2}\times 8^{x-1}}{2^{x-3}\times 16^{x}}\) - step1: Multiply: \(\frac{2^{5x+1}}{2^{x-3}\times 16^{x}}\) - step2: Multiply: \(\frac{2^{5x+1}}{2^{5x-3}}\) - step3: Divide the numbers: \(2^{5x+1-\left(5x-3\right)}\) - step4: Subtract the terms: \(2^{4}\) - step5: Evaluate the power: \(16\) Calculate or simplify the expression \( \frac{6^{n+3} \cdot 2^{n-1}}{12^{n+2}} \). Simplify the expression by following steps: - step0: Solution: \(\frac{6^{n+3}\times 2^{n-1}}{12^{n+2}}\) - step1: Factor the expression: \(\frac{6^{n+3}\times 2^{n-1}}{6^{n+2}\times 2^{n+2}}\) - step2: Reduce the fraction: \(\frac{6}{2^{3}}\) - step3: Factor the expression: \(\frac{2\times 3}{2^{3}}\) - step4: Reduce the fraction: \(\frac{3}{2^{2}}\) - step5: Evaluate the power: \(\frac{3}{4}\) Calculate or simplify the expression \( \sqrt{x} \). Simplify the expression by following steps: - step0: Solution: \(\sqrt{x}\) Calculate or simplify the expression \( \frac{2^{4 x+1} \cdot 9^{x} \cdot 6^{2 x-1}}{12^{3 x} \cdot 3^{x}} \). Simplify the expression by following steps: - step0: Solution: \(\frac{2^{4x+1}\times 9^{x}\times 6^{2x-1}}{12^{3x}\times 3^{x}}\) - step1: Factor the expression: \(\frac{2^{4x+1}\times 9^{x}\times 6^{2x-1}}{2^{4x}\times 108^{x}\times 3^{x}}\) - step2: Reduce the fraction: \(\frac{2\times 9^{x}\times 6^{2x-1}}{108^{x}\times 3^{x}}\) - step3: Factor the expression: \(\frac{2\times 9^{x}\times 6^{2x-1}}{2^{2x}\times 27^{x}\times 3^{x}}\) - step4: Divide the numbers: \(\frac{2^{1-2x}\times 9^{x}\times 6^{2x-1}}{27^{x}\times 3^{x}}\) - step5: Factor the expression: \(\frac{2^{1-2x}\times 3^{2x}\times 6^{2x-1}}{3^{3x}\times 3^{x}}\) - step6: Reduce the fraction: \(\frac{2^{1-2x}\times 6^{2x-1}}{3^{x}\times 3^{x}}\) - step7: Factor the expression: \(\frac{2^{1-2x}\times 3^{2x-1}\times 2^{2x-1}}{3^{x}\times 3^{x}}\) - step8: Reduce the fraction: \(\frac{2^{1-2x}\times 2^{2x-1}}{3}\) - step9: Calculate: \(\frac{1}{3}\) Here are the simplified results for each expression and the conversions to exponential form: ### Simplifications 1. **Expression:** \[ \frac{4^{x+2} \cdot 8^{x-1}}{2^{x-3} \cdot 16^{x}} \] **Simplified Result:** \[ 16 \] 2. **Expression:** \[ \frac{15^{n+2} \cdot 45^{1-n}}{3^{3-n}} \] **Simplified Result:** \[ 375 \] 3. **Expression:** \[ \frac{2^{x}+2^{x+1}}{2^{x}-2^{x+2}} \] **Simplified Result:** \[ -1 \] 4. **Expression:** \[ \frac{25^{x+1} \cdot 6}{10^{x-1} \cdot 15^{x}} \] **Simplified Result:** \[ \frac{125}{2^{-2+x} \times 3^{x-1}} \] 5. **Expression:** \[ \frac{6^{n+3} \cdot 2^{n-1}}{12^{n+2}} \] **Simplified Result:** \[ \frac{3}{4} \] 6. **Expression:** \[ \frac{2^{4 x+1} \cdot 9^{x} \cdot 6^{2 x-1}}{12^{3 x} \cdot 3^{x}} \] **Simplified Result:** \[ \frac{1}{3} \] ### Conversions to Exponential Form 1. **Expression:** \[ \sqrt{x} \] **Exponential Form:** \[ x^{\frac{1}{2}} \] 2. **Expression:** \[ \sqrt[3]{x^{2}} \] **Exponential Form:** \[ x^{\frac{2}{3}} \] If you have any further questions or need additional assistance, feel free to ask!

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

The Deep Dive

Many mathematical concepts actually trace back to ancient civilizations! For instance, the use of exponents can be linked to the Egyptians and Babylonians, who employed early forms of exponentiation in their calculations for areas and volumes. It wasn’t until the 16th century that exponents were standardized in a way that we recognize today, thanks to mathematicians like René Descartes. In real-world applications, simplifying expressions is crucial in fields such as engineering, physics, and economics. Whether you're calculating acceleration in physics or determining optimal pricing models in economics, simplifying complex expressions can provide clearer insights and more manageable computations. Remember, mastering simplification can not only boost your confidence but also enhance your problem-solving skills in practical scenarios!

Related Questions

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy