1.1 Simplify \( 1.1 .1 \frac{4^{x+2} \cdot 8^{x-1}}{2^{x-3} \cdot 16^{x}} \) 1.1.2. \( \frac{15^{n+2} \cdot 45^{1-n}}{3^{3-n}} \) \( 11.3 \frac{2^{x}+2^{x+1}}{2^{x}-2^{x+2}} \) 1.1.4 \( \frac{25^{x+1} \cdot 6}{10^{x-1} \cdot 15^{x}} \) \( 1.1 .5 \quad \frac{6^{n+3} \cdot 2^{n-1}}{12^{n+2}} \) 1.1.6 \( \frac{2^{4 x+1} \cdot 9^{x} \cdot 6^{2 x-1}}{12^{3 x} \cdot 3^{x}} \) 1.2 Convert the following into exponential form 1.2.1 a. \( \sqrt{x} \) b. \( \sqrt[3]{x^{2}} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
Many mathematical concepts actually trace back to ancient civilizations! For instance, the use of exponents can be linked to the Egyptians and Babylonians, who employed early forms of exponentiation in their calculations for areas and volumes. It wasn’t until the 16th century that exponents were standardized in a way that we recognize today, thanks to mathematicians like René Descartes. In real-world applications, simplifying expressions is crucial in fields such as engineering, physics, and economics. Whether you're calculating acceleration in physics or determining optimal pricing models in economics, simplifying complex expressions can provide clearer insights and more manageable computations. Remember, mastering simplification can not only boost your confidence but also enhance your problem-solving skills in practical scenarios!
