Question
upstudy study bank question image url

Solve \( 6 \tan x-7=0 \) for \( \pi \leq x \leq 2 \pi \) Give your answer correct to three significant figures.

Ask by Ortega Ramirez. in Singapore
Feb 16,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

The solution is \( x \approx 4.00 \) radians.

Solution

We start with the equation:   6 tan x – 7 = 0 Step 1. Solve for tan x:   6 tan x = 7   tan x = 7/6 Step 2. Find the general solution:   Since tan x has a period of π, the general solution is:   x = arctan(7/6) + nπ, where n is any integer. Step 3. Determine the solution in the interval π ≤ x ≤ 2π:   The principal value, arctan(7/6), lies in the first quadrant (0 to π/2).   Since we need a solution between π and 2π, we take:   x = arctan(7/6) + π Step 4. Evaluate numerically:   arctan(7/6) ≈ 0.863 radians (approximate value)   x ≈ π + 0.863 ≈ 3.142 + 0.863 = 4.005 radians Step 5. Round to three significant figures:   x ≈ 4.00 radians Thus, the solution to the equation 6 tan x – 7 = 0 in the interval π ≤ x ≤ 2π, correct to three significant figures, is x ≈ 4.00 radians.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Extra Insights

To solve the equation \( 6 \tan x - 7 = 0 \), we first isolate \( \tan x \): \[ 6 \tan x = 7 \quad \Rightarrow \quad \tan x = \frac{7}{6} \] Next, we need to find the angles \( x \) within the interval \( \pi \leq x \leq 2\pi \). The tangent function is positive in the third and first quadrants; however, since we are concerned with the interval from \( \pi \) to \( 2\pi \), we focus on the third quadrant where the angle can be expressed as: \[ x = \pi + \tan^{-1}\left( \frac{7}{6} \right) \] Now, we need to calculate \( \tan^{-1}\left( \frac{7}{6} \right) \): Using a calculator, \[ \tan^{-1}\left( \frac{7}{6} \right) \approx 0.6947 \text{ radians} \] Thus, we find \( x \): \[ x \approx \pi + 0.6947 \] Calculating this gives: \[ x \approx 3.1416 + 0.6947 \approx 3.8363 \] Now, to ensure we round to three significant figures, we have: \[ x \approx 3.84 \] Now, we should also check for any other solutions in the interval. The tangent function has a period of \( \pi \), so the next solution would be: \[ x \approx 3.8363 + \pi \approx 3.8363 + 3.1416 = 6.978 \] However, this value \( 6.978 \) exceeds \( 2\pi \) (approximately \( 6.2832 \)), so it is not valid. Thus, the final answer is: \[ \boxed{3.84} \]

Related Questions

8. Simplify without using a calculator. (8.1) \( \frac{\sin \left(180^{\circ}-x\right) \cdot \tan \left(360^{\circ}-x\right)}{\cos \left(80^{\circ}-x\right)} \times \frac{\cos \left(-180^{\circ}-x\right)}{\cos \left(360^{\circ}+x\right) \sin \left(360^{\circ}-x\right)} \) \( 8.2 \frac{\cos 135^{\circ} \sin 160^{\circ}}{\sin 225^{\circ} \cos 70^{\circ}} \) (8.3) \( \frac{\sin (-\theta)+\cos 120^{\circ}+\tan \left(-180^{\circ}-\theta\right)}{\sin ^{2} 225^{\circ}-\tan (-\theta)-\cos \left(90^{\circ}+\theta\right)} \) B.4 \( 4^{x} \frac{\sin 247^{\circ} \cdot \tan 23^{\circ} \cdot \cos 113^{\circ}}{\sin \left(-157^{\circ}\right)} \) (8.5) \( \frac{3 \cos 150^{\circ} \cdot \sin 270^{\circ}}{\tan \left(-45^{\circ}\right) \cdot \cos 600^{\circ}} \) 8.6) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}+x\right)}{\sin (-x)}-\sin y \cdot \cos \left(90^{\circ}-y\right) \) \( 8.7 \frac{\tan 30^{\circ} \cdot \sin 60^{\circ} \cdot \cos 25^{\circ}}{\cos 135^{\circ} \cdot \sin \left(-45^{\circ}\right) \cdot \sin 65^{\circ}} \) 6.8) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}-x\right)}{\cos \left(90^{\circ}+x\right)}-\frac{\cos \left(180^{\circ}-x\right)}{\sin \left(90^{\circ}+x\right)} \) \( 8.9 \frac{\sin 189^{\circ}}{\tan 549^{\circ}}-\frac{\cos ^{2}\left(-9^{\circ}\right)}{\sin 99^{\circ}} \) Solving trigonometric equations (no calculators) (1.) If \( \sin \mathrm{A}=\frac{-3}{5} \) and \( 0^{\circ}<\mathrm{A}<270^{\circ} \) determine the value of: \( 1.1 \cos A \) \( 1.2 \tan A \). (2.) If \( -5 \tan \theta-3=0 \) and \( \sin \theta<0 \), determine: \( 2.1 \sin ^{2} \theta^{\circ} \) \( 2.25 \cos \theta \) \( 2.3 \quad 1-\cos ^{2} \theta \) 3. If \( 13 \cos \theta+12=0 \) and \( 180^{\circ}<\theta<360^{\circ} \), evaluate: \( 3.2 \tan \theta \) \( 3.1 \sin \theta \cos \theta \) \( 3.3 \sin ^{2} \theta+\cos ^{2} \theta \). (4.) If \( 3 \tan \theta-2=0 \) and \( \theta \in\left[90^{\circ} ; 360^{\circ}\right] \), determine, the value of \( \sqrt{13}(\sin \theta-\cos \theta \) (5.) If \( \cos 52^{\circ}=k \) as illustrated in the diagram, determine each of the following i
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy