Pregunta
upstudy study bank question image url

Solve \( 6 \tan x-7=0 \) for \( \pi \leq x \leq 2 \pi \) Give your answer correct to three significant figures.

Ask by Ortega Ramirez. in Singapore
Feb 16,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The solution is \( x \approx 4.00 \) radians.

Solución

We start with the equation:   6 tan x – 7 = 0 Step 1. Solve for tan x:   6 tan x = 7   tan x = 7/6 Step 2. Find the general solution:   Since tan x has a period of π, the general solution is:   x = arctan(7/6) + nπ, where n is any integer. Step 3. Determine the solution in the interval π ≤ x ≤ 2π:   The principal value, arctan(7/6), lies in the first quadrant (0 to π/2).   Since we need a solution between π and 2π, we take:   x = arctan(7/6) + π Step 4. Evaluate numerically:   arctan(7/6) ≈ 0.863 radians (approximate value)   x ≈ π + 0.863 ≈ 3.142 + 0.863 = 4.005 radians Step 5. Round to three significant figures:   x ≈ 4.00 radians Thus, the solution to the equation 6 tan x – 7 = 0 in the interval π ≤ x ≤ 2π, correct to three significant figures, is x ≈ 4.00 radians.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To solve the equation \( 6 \tan x - 7 = 0 \), we first isolate \( \tan x \): \[ 6 \tan x = 7 \quad \Rightarrow \quad \tan x = \frac{7}{6} \] Next, we need to find the angles \( x \) within the interval \( \pi \leq x \leq 2\pi \). The tangent function is positive in the third and first quadrants; however, since we are concerned with the interval from \( \pi \) to \( 2\pi \), we focus on the third quadrant where the angle can be expressed as: \[ x = \pi + \tan^{-1}\left( \frac{7}{6} \right) \] Now, we need to calculate \( \tan^{-1}\left( \frac{7}{6} \right) \): Using a calculator, \[ \tan^{-1}\left( \frac{7}{6} \right) \approx 0.6947 \text{ radians} \] Thus, we find \( x \): \[ x \approx \pi + 0.6947 \] Calculating this gives: \[ x \approx 3.1416 + 0.6947 \approx 3.8363 \] Now, to ensure we round to three significant figures, we have: \[ x \approx 3.84 \] Now, we should also check for any other solutions in the interval. The tangent function has a period of \( \pi \), so the next solution would be: \[ x \approx 3.8363 + \pi \approx 3.8363 + 3.1416 = 6.978 \] However, this value \( 6.978 \) exceeds \( 2\pi \) (approximately \( 6.2832 \)), so it is not valid. Thus, the final answer is: \[ \boxed{3.84} \]

preguntas relacionadas

8. Simplify without using a calculator. (8.1) \( \frac{\sin \left(180^{\circ}-x\right) \cdot \tan \left(360^{\circ}-x\right)}{\cos \left(80^{\circ}-x\right)} \times \frac{\cos \left(-180^{\circ}-x\right)}{\cos \left(360^{\circ}+x\right) \sin \left(360^{\circ}-x\right)} \) \( 8.2 \frac{\cos 135^{\circ} \sin 160^{\circ}}{\sin 225^{\circ} \cos 70^{\circ}} \) (8.3) \( \frac{\sin (-\theta)+\cos 120^{\circ}+\tan \left(-180^{\circ}-\theta\right)}{\sin ^{2} 225^{\circ}-\tan (-\theta)-\cos \left(90^{\circ}+\theta\right)} \) B.4 \( 4^{x} \frac{\sin 247^{\circ} \cdot \tan 23^{\circ} \cdot \cos 113^{\circ}}{\sin \left(-157^{\circ}\right)} \) (8.5) \( \frac{3 \cos 150^{\circ} \cdot \sin 270^{\circ}}{\tan \left(-45^{\circ}\right) \cdot \cos 600^{\circ}} \) 8.6) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}+x\right)}{\sin (-x)}-\sin y \cdot \cos \left(90^{\circ}-y\right) \) \( 8.7 \frac{\tan 30^{\circ} \cdot \sin 60^{\circ} \cdot \cos 25^{\circ}}{\cos 135^{\circ} \cdot \sin \left(-45^{\circ}\right) \cdot \sin 65^{\circ}} \) 6.8) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}-x\right)}{\cos \left(90^{\circ}+x\right)}-\frac{\cos \left(180^{\circ}-x\right)}{\sin \left(90^{\circ}+x\right)} \) \( 8.9 \frac{\sin 189^{\circ}}{\tan 549^{\circ}}-\frac{\cos ^{2}\left(-9^{\circ}\right)}{\sin 99^{\circ}} \) Solving trigonometric equations (no calculators) (1.) If \( \sin \mathrm{A}=\frac{-3}{5} \) and \( 0^{\circ}<\mathrm{A}<270^{\circ} \) determine the value of: \( 1.1 \cos A \) \( 1.2 \tan A \). (2.) If \( -5 \tan \theta-3=0 \) and \( \sin \theta<0 \), determine: \( 2.1 \sin ^{2} \theta^{\circ} \) \( 2.25 \cos \theta \) \( 2.3 \quad 1-\cos ^{2} \theta \) 3. If \( 13 \cos \theta+12=0 \) and \( 180^{\circ}<\theta<360^{\circ} \), evaluate: \( 3.2 \tan \theta \) \( 3.1 \sin \theta \cos \theta \) \( 3.3 \sin ^{2} \theta+\cos ^{2} \theta \). (4.) If \( 3 \tan \theta-2=0 \) and \( \theta \in\left[90^{\circ} ; 360^{\circ}\right] \), determine, the value of \( \sqrt{13}(\sin \theta-\cos \theta \) (5.) If \( \cos 52^{\circ}=k \) as illustrated in the diagram, determine each of the following i
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad