Answer
25. \( 56\sqrt{3} + 42\sqrt{6} - 36\sqrt{2} - 54 \)
26. \( 212 \)
27. \( 1260 \)
28. \( 36\sqrt{2} + 36\sqrt{6} + 20\sqrt{3} + 60 \)
Solution
Simplify the expression by following steps:
- step0: Multiply the terms:
\(\left(8\sqrt{5}-6\sqrt{3}\right)\left(8\sqrt{5}+6\sqrt{3}\right)\)
- step1: Simplify the product:
\(\left(8\sqrt{5}\right)^{2}-\left(6\sqrt{3}\right)^{2}\)
- step2: Evaluate the power:
\(320-108\)
- step3: Subtract the numbers:
\(212\)
Expand the expression \( (12 \sqrt{10}-6 \sqrt{5})(12 \sqrt{10}+6 \sqrt{5}) \)
Simplify the expression by following steps:
- step0: Multiply the terms:
\(\left(12\sqrt{10}-6\sqrt{5}\right)\left(12\sqrt{10}+6\sqrt{5}\right)\)
- step1: Simplify the product:
\(\left(12\sqrt{10}\right)^{2}-\left(6\sqrt{5}\right)^{2}\)
- step2: Evaluate the power:
\(1440-180\)
- step3: Subtract the numbers:
\(1260\)
Expand the expression \( (6 \sqrt{3}+5 \sqrt{2})(2 \sqrt{6}+3 \sqrt{8}) \)
Simplify the expression by following steps:
- step0: Simplify:
\(\left(6\sqrt{3}+5\sqrt{2}\right)\left(2\sqrt{6}+3\sqrt{8}\right)\)
- step1: Simplify the root:
\(\left(6\sqrt{3}+5\sqrt{2}\right)\left(2\sqrt{6}+3\times 2\sqrt{2}\right)\)
- step2: Multiply the terms:
\(\left(6\sqrt{3}+5\sqrt{2}\right)\left(2\sqrt{6}+6\sqrt{2}\right)\)
- step3: Apply the distributive property:
\(6\sqrt{3}\times 2\sqrt{6}+6\sqrt{3}\times 6\sqrt{2}+5\sqrt{2}\times 2\sqrt{6}+5\sqrt{2}\times 6\sqrt{2}\)
- step4: Multiply the numbers:
\(36\sqrt{2}+36\sqrt{6}+20\sqrt{3}+60\)
Expand the expression \( (7 \sqrt{2}-3 \sqrt{3})(4 \sqrt{6}+3 \sqrt{12}) \)
Simplify the expression by following steps:
- step0: Simplify:
\(\left(7\sqrt{2}-3\sqrt{3}\right)\left(4\sqrt{6}+3\sqrt{12}\right)\)
- step1: Simplify the root:
\(\left(7\sqrt{2}-3\sqrt{3}\right)\left(4\sqrt{6}+3\times 2\sqrt{3}\right)\)
- step2: Multiply the terms:
\(\left(7\sqrt{2}-3\sqrt{3}\right)\left(4\sqrt{6}+6\sqrt{3}\right)\)
- step3: Apply the distributive property:
\(7\sqrt{2}\times 4\sqrt{6}+7\sqrt{2}\times 6\sqrt{3}-3\sqrt{3}\times 4\sqrt{6}-3\sqrt{3}\times 6\sqrt{3}\)
- step4: Multiply the numbers:
\(56\sqrt{3}+42\sqrt{6}-36\sqrt{2}-54\)
Let's simplify each expression step by step.
### 25. \( (7 \sqrt{2}-3 \sqrt{3})(4 \sqrt{6}+3 \sqrt{12}) \)
Using the distributive property (FOIL method):
\[
(7 \sqrt{2})(4 \sqrt{6}) + (7 \sqrt{2})(3 \sqrt{12}) - (3 \sqrt{3})(4 \sqrt{6}) - (3 \sqrt{3})(3 \sqrt{12})
\]
Calculating each term:
1. \( 7 \sqrt{2} \cdot 4 \sqrt{6} = 28 \sqrt{12} = 28 \cdot 2 \sqrt{3} = 56 \sqrt{3} \)
2. \( 7 \sqrt{2} \cdot 3 \sqrt{12} = 21 \sqrt{24} = 21 \cdot 2 \sqrt{6} = 42 \sqrt{6} \)
3. \( -3 \sqrt{3} \cdot 4 \sqrt{6} = -12 \sqrt{18} = -12 \cdot 3 \sqrt{2} = -36 \sqrt{2} \)
4. \( -3 \sqrt{3} \cdot 3 \sqrt{12} = -9 \sqrt{36} = -9 \cdot 6 = -54 \)
Combining all terms:
\[
56 \sqrt{3} + 42 \sqrt{6} - 36 \sqrt{2} - 54
\]
### 26. \( (8 \sqrt{5}-6 \sqrt{3})(8 \sqrt{5}+6 \sqrt{3}) \)
This is a difference of squares:
\[
(8 \sqrt{5})^2 - (6 \sqrt{3})^2 = 64 \cdot 5 - 36 \cdot 3 = 320 - 108 = 212
\]
### 27. \( (12 \sqrt{10}-6 \sqrt{5})(12 \sqrt{10}+6 \sqrt{5}) \)
Again, this is a difference of squares:
\[
(12 \sqrt{10})^2 - (6 \sqrt{5})^2 = 144 \cdot 10 - 36 \cdot 5 = 1440 - 180 = 1260
\]
### 28. \( (6 \sqrt{3}+5 \sqrt{2})(2 \sqrt{6}+3 \sqrt{8}) \)
Using the distributive property:
\[
(6 \sqrt{3})(2 \sqrt{6}) + (6 \sqrt{3})(3 \sqrt{8}) + (5 \sqrt{2})(2 \sqrt{6}) + (5 \sqrt{2})(3 \sqrt{8})
\]
Calculating each term:
1. \( 6 \sqrt{3} \cdot 2 \sqrt{6} = 12 \sqrt{18} = 12 \cdot 3 \sqrt{2} = 36 \sqrt{2} \)
2. \( 6 \sqrt{3} \cdot 3 \sqrt{8} = 18 \sqrt{24} = 18 \cdot 2 \sqrt{6} = 36 \sqrt{6} \)
3. \( 5 \sqrt{2} \cdot 2 \sqrt{6} = 10 \sqrt{12} = 10 \cdot 2 \sqrt{3} = 20 \sqrt{3} \)
4. \( 5 \sqrt{2} \cdot 3 \sqrt{8} = 15 \sqrt{16} = 15 \cdot 4 = 60 \)
Combining all terms:
\[
36 \sqrt{2} + 36 \sqrt{6} + 20 \sqrt{3} + 60
\]
### Summary of Results
- **25:** \( 56 \sqrt{3} + 42 \sqrt{6} - 36 \sqrt{2} - 54 \)
- **26:** \( 212 \)
- **27:** \( 1260 \)
- **28:** \( 36 \sqrt{2} + 36 \sqrt{6} + 20 \sqrt{3} + 60 \)
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution