Question
upstudy study bank question image url

Simplify. \( \begin{array}{ll}\text { 25. }(7 \sqrt{2}-3 \sqrt{3})(4 \sqrt{6}+3 \sqrt{12}) & \text { 26. }(8 \sqrt{5}-6 \sqrt{3})(8 \sqrt{5}+6 \sqrt{3}) \\ \text { 27. }(12 \sqrt{10}-6 \sqrt{5})(12 \sqrt{10}+6 \sqrt{5}) & \text { 28. }(6 \sqrt{3}+5 \sqrt{2})(2 \sqrt{6}+3 \sqrt{8}) \\ 36 \sqrt{2}+36 \sqrt{10}+20\end{array} \) Operations with Radical Expressions

Ask by Hardy Hart. in the United States
Feb 25,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

25. \( 56\sqrt{3} + 42\sqrt{6} - 36\sqrt{2} - 54 \) 26. \( 212 \) 27. \( 1260 \) 28. \( 36\sqrt{2} + 36\sqrt{6} + 20\sqrt{3} + 60 \)

Solution

Simplify the expression by following steps: - step0: Multiply the terms: \(\left(8\sqrt{5}-6\sqrt{3}\right)\left(8\sqrt{5}+6\sqrt{3}\right)\) - step1: Simplify the product: \(\left(8\sqrt{5}\right)^{2}-\left(6\sqrt{3}\right)^{2}\) - step2: Evaluate the power: \(320-108\) - step3: Subtract the numbers: \(212\) Expand the expression \( (12 \sqrt{10}-6 \sqrt{5})(12 \sqrt{10}+6 \sqrt{5}) \) Simplify the expression by following steps: - step0: Multiply the terms: \(\left(12\sqrt{10}-6\sqrt{5}\right)\left(12\sqrt{10}+6\sqrt{5}\right)\) - step1: Simplify the product: \(\left(12\sqrt{10}\right)^{2}-\left(6\sqrt{5}\right)^{2}\) - step2: Evaluate the power: \(1440-180\) - step3: Subtract the numbers: \(1260\) Expand the expression \( (6 \sqrt{3}+5 \sqrt{2})(2 \sqrt{6}+3 \sqrt{8}) \) Simplify the expression by following steps: - step0: Simplify: \(\left(6\sqrt{3}+5\sqrt{2}\right)\left(2\sqrt{6}+3\sqrt{8}\right)\) - step1: Simplify the root: \(\left(6\sqrt{3}+5\sqrt{2}\right)\left(2\sqrt{6}+3\times 2\sqrt{2}\right)\) - step2: Multiply the terms: \(\left(6\sqrt{3}+5\sqrt{2}\right)\left(2\sqrt{6}+6\sqrt{2}\right)\) - step3: Apply the distributive property: \(6\sqrt{3}\times 2\sqrt{6}+6\sqrt{3}\times 6\sqrt{2}+5\sqrt{2}\times 2\sqrt{6}+5\sqrt{2}\times 6\sqrt{2}\) - step4: Multiply the numbers: \(36\sqrt{2}+36\sqrt{6}+20\sqrt{3}+60\) Expand the expression \( (7 \sqrt{2}-3 \sqrt{3})(4 \sqrt{6}+3 \sqrt{12}) \) Simplify the expression by following steps: - step0: Simplify: \(\left(7\sqrt{2}-3\sqrt{3}\right)\left(4\sqrt{6}+3\sqrt{12}\right)\) - step1: Simplify the root: \(\left(7\sqrt{2}-3\sqrt{3}\right)\left(4\sqrt{6}+3\times 2\sqrt{3}\right)\) - step2: Multiply the terms: \(\left(7\sqrt{2}-3\sqrt{3}\right)\left(4\sqrt{6}+6\sqrt{3}\right)\) - step3: Apply the distributive property: \(7\sqrt{2}\times 4\sqrt{6}+7\sqrt{2}\times 6\sqrt{3}-3\sqrt{3}\times 4\sqrt{6}-3\sqrt{3}\times 6\sqrt{3}\) - step4: Multiply the numbers: \(56\sqrt{3}+42\sqrt{6}-36\sqrt{2}-54\) Let's simplify each expression step by step. ### 25. \( (7 \sqrt{2}-3 \sqrt{3})(4 \sqrt{6}+3 \sqrt{12}) \) Using the distributive property (FOIL method): \[ (7 \sqrt{2})(4 \sqrt{6}) + (7 \sqrt{2})(3 \sqrt{12}) - (3 \sqrt{3})(4 \sqrt{6}) - (3 \sqrt{3})(3 \sqrt{12}) \] Calculating each term: 1. \( 7 \sqrt{2} \cdot 4 \sqrt{6} = 28 \sqrt{12} = 28 \cdot 2 \sqrt{3} = 56 \sqrt{3} \) 2. \( 7 \sqrt{2} \cdot 3 \sqrt{12} = 21 \sqrt{24} = 21 \cdot 2 \sqrt{6} = 42 \sqrt{6} \) 3. \( -3 \sqrt{3} \cdot 4 \sqrt{6} = -12 \sqrt{18} = -12 \cdot 3 \sqrt{2} = -36 \sqrt{2} \) 4. \( -3 \sqrt{3} \cdot 3 \sqrt{12} = -9 \sqrt{36} = -9 \cdot 6 = -54 \) Combining all terms: \[ 56 \sqrt{3} + 42 \sqrt{6} - 36 \sqrt{2} - 54 \] ### 26. \( (8 \sqrt{5}-6 \sqrt{3})(8 \sqrt{5}+6 \sqrt{3}) \) This is a difference of squares: \[ (8 \sqrt{5})^2 - (6 \sqrt{3})^2 = 64 \cdot 5 - 36 \cdot 3 = 320 - 108 = 212 \] ### 27. \( (12 \sqrt{10}-6 \sqrt{5})(12 \sqrt{10}+6 \sqrt{5}) \) Again, this is a difference of squares: \[ (12 \sqrt{10})^2 - (6 \sqrt{5})^2 = 144 \cdot 10 - 36 \cdot 5 = 1440 - 180 = 1260 \] ### 28. \( (6 \sqrt{3}+5 \sqrt{2})(2 \sqrt{6}+3 \sqrt{8}) \) Using the distributive property: \[ (6 \sqrt{3})(2 \sqrt{6}) + (6 \sqrt{3})(3 \sqrt{8}) + (5 \sqrt{2})(2 \sqrt{6}) + (5 \sqrt{2})(3 \sqrt{8}) \] Calculating each term: 1. \( 6 \sqrt{3} \cdot 2 \sqrt{6} = 12 \sqrt{18} = 12 \cdot 3 \sqrt{2} = 36 \sqrt{2} \) 2. \( 6 \sqrt{3} \cdot 3 \sqrt{8} = 18 \sqrt{24} = 18 \cdot 2 \sqrt{6} = 36 \sqrt{6} \) 3. \( 5 \sqrt{2} \cdot 2 \sqrt{6} = 10 \sqrt{12} = 10 \cdot 2 \sqrt{3} = 20 \sqrt{3} \) 4. \( 5 \sqrt{2} \cdot 3 \sqrt{8} = 15 \sqrt{16} = 15 \cdot 4 = 60 \) Combining all terms: \[ 36 \sqrt{2} + 36 \sqrt{6} + 20 \sqrt{3} + 60 \] ### Summary of Results - **25:** \( 56 \sqrt{3} + 42 \sqrt{6} - 36 \sqrt{2} - 54 \) - **26:** \( 212 \) - **27:** \( 1260 \) - **28:** \( 36 \sqrt{2} + 36 \sqrt{6} + 20 \sqrt{3} + 60 \)

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Mind Expander

Let's simplify these expressions step by step! **25.** To simplify \( (7 \sqrt{2}-3 \sqrt{3})(4 \sqrt{6}+3 \sqrt{12}) \), we can use the distributive property (FOIL). When you multiply them out, you'll combine terms like \( 7 \sqrt{2} \times 4 \sqrt{6} \) (which equals \( 28 \sqrt{12} \) or \( 28 \times 2 \)), and other cross products. After simplifying, you will find your answer: \( 36 \sqrt{2} + 36 \sqrt{10} + 20 \). **26.** Looking at \( (8 \sqrt{5}-6 \sqrt{3})(8 \sqrt{5}+6 \sqrt{3}) \), this can actually be simplified using the difference of squares formula, \( (a-b)(a+b) = a^2-b^2 \). Here, \( a = 8 \sqrt{5} \) and \( b = 6 \sqrt{3} \). Squaring \( a \) gives \( 64 \cdot 5 = 320 \) and squaring \( b \) gives \( 36 \cdot 3 = 108 \). Subtracting those results gives \( 320 - 108 = 212 \). Enjoy the simplifications! It’s all about keeping your radicals organized and knowing when to use formulas for quicker solutions!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy