If \( \tan 35^{\circ}=m \), determine the value of the following in terms of \( m \) : 5.1.1 \( \sin 215^{\circ} \) 5.1.2 \( \sin 70^{\circ} \)
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


Extra Insights
To express \( \sin 215^{\circ} \) and \( \sin 70^{\circ} \) in terms of \( m \) where \( \tan 35^{\circ} = m \), we can use trigonometric identities. First up, for \( \sin 215^{\circ} \): Recognize that \( 215^{\circ} = 180^{\circ} + 35^{\circ} \). The sine of angles in this quadrant can be determined using the sine angle addition formula. Thus, \[ \sin 215^{\circ} = \sin(180^{\circ} + 35^{\circ}) = -\sin 35^{\circ}. \] From the definition of tangent, we have \( \tan 35^{\circ} = \frac{\sin 35^{\circ}}{\cos 35^{\circ}} = m \), leading to \( \sin 35^{\circ} = m \cos 35^{\circ} \). Therefore, \[ \sin 215^{\circ} = -m \cos 35^{\circ}. \] Now, for \( \sin 70^{\circ} \): Utilize the identity \( \sin 70^{\circ} = \sin(2 \times 35^{\circ}) = 2 \sin 35^{\circ} \cos 35^{\circ} \). Substituting \( \sin 35^{\circ} = m \cos 35^{\circ} \), \[ \sin 70^{\circ} = 2(m \cos 35^{\circ})\cos 35^{\circ} = 2m \cos^2 35^{\circ}. \] Thus, the answers are: 5.1.1 \( \sin 215^{\circ} = -m \cos 35^{\circ} \) 5.1.2 \( \sin 70^{\circ} = 2m \cos^2 35^{\circ} \)