Suppose \( f(x)=7 x+9 \) and \( g(x)=\sqrt{x^{2}-3 x+6} \) \( (f \circ g)(x)=\square \) \( (f \circ g)(3)=\square \)
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


The Deep Dive
To find \( (f \circ g)(x) \), we first need to compute \( g(x) \) and then substitute that into \( f(x) \). Given \( g(x) = \sqrt{x^2 - 3x + 6} \), we first evaluate \( g(3) \): \[ g(3) = \sqrt{3^2 - 3(3) + 6} = \sqrt{9 - 9 + 6} = \sqrt{6} \] Now, we can find \( (f \circ g)(x) = f(g(x)) \): \[ f(g(x)) = f\left(\sqrt{x^2 - 3x + 6}\right) = 7\left(\sqrt{x^2 - 3x + 6}\right) + 9 \] Thus, \[ (f \circ g)(x) = 7\sqrt{x^2 - 3x + 6} + 9 \] Now, substituting \( x = 3 \) into \( (f \circ g)(x) \): \[ (f \circ g)(3) = 7\sqrt{3^2 - 3(3) + 6} + 9 = 7\sqrt{6} + 9 \] So the solutions are: \[ (f \circ g)(x) = 7\sqrt{x^2 - 3x + 6} + 9 \] \[ (f \circ g)(3) = 7\sqrt{6} + 9 \]