7. \( \int_{0}^{\pi} \int_{0}^{1} \int_{0}^{\sqrt{1-z^{2}}} z \sin x d y d z d x \)
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


Beyond the Answer
To evaluate the integral \[ I = \int_{0}^{\pi} \int_{0}^{1} \int_{0}^{\sqrt{1-z^{2}}} z \sin x \, dy \, dz \, dx, \] we start by noting that the innermost integral with respect to \(y\) is relatively straightforward. First, evaluate the integral with respect to \(y\): \[ \int_{0}^{\sqrt{1-z^{2}}} z \sin x \, dy = z \sin x \cdot \left[ y \right]_{0}^{\sqrt{1-z^{2}}} = z \sin x \cdot \sqrt{1 - z^{2}}. \] This allows us to simplify the integral \(I\) as follows: \[ I = \int_{0}^{\pi} \int_{0}^{1} z \sin x \sqrt{1 - z^{2}} \, dz \, dx. \] Next, we can separate the integrals: \[ I = \int_{0}^{\pi} \sin x \, dx \cdot \int_{0}^{1} z \sqrt{1 - z^{2}} \, dz. \] The first integral can be evaluated easily: \[ \int_{0}^{\pi} \sin x \, dx = \left[ -\cos x \right]_{0}^{\pi} = -(-1 - 1) = 2. \] Now focus on the second integral: \[ \int_{0}^{1} z \sqrt{1 - z^{2}} \, dz. \] To evaluate this, let's use the substitution \( u = 1 - z^{2} \), so that \( du = -2z \, dz \) or \( dz = -\frac{du}{2z} \). Hence, \( z = \sqrt{1-u} \) and when \( z = 0 \), \( u = 1 \), and when \( z = 1 \), \( u = 0 \). Thus, \[ \int_{0}^{1} z \sqrt{1 - z^{2}} \, dz = \int_{1}^{0} z \sqrt{u} \left(-\frac{du}{2z}\right) = \frac{1}{2} \int_{0}^{1} \sqrt{u} \, du. \] Calculating this integral gives: \[ \frac{1}{2} \cdot \left[ \frac{u^{3/2}}{\frac{3}{2}} \right]_{0}^{1} = \frac{1}{2} \cdot \frac{2}{3} = \frac{1}{3}. \] Putting this back into our expression for \(I\): \[ I = 2 \cdot \frac{1}{3} = \frac{2}{3}. \] Thus, the final value of the integral is \[ \boxed{\frac{2}{3}}. \]