Harrington Potter
04/08/2023 · Elementary School

3. Considere la matriz \[ A=\left(\begin{array}{rrr}3 & -1 & -1 \\ 1 & 1 & -1 \\ 1 & -1 & 1\end{array}\right) \] cuyo polinomio característico es \( p(\lambda)=(1-\lambda)(\lambda-2)^{2} \). (a) (10 puntos) Determine el espacio propio asociado a \( \lambda=1 \). (b) \( (10 \) puntos) Determine el espacio propio asociado a \( \lambda=2 \). (c) \( (4 \) puntos) iEs \( A \) diagonalizable? En caso que lo sea explicite las matrices \( P \) y \( D \) que verifican \( P^{-1} A P=D \).

Upstudy ThothAI Solution

Tutor-Verified Answer

Quick Answer

(a) El espacio propio asociado a \( \lambda=1 \) es el conjunto de vectores de la forma \( t \left(\begin{array}{c}1 \\ 1 \\ 1\end{array}\right) \), donde \( t \) es cualquier número real. (b) El espacio propio asociado a \( \lambda=2 \) es el conjunto de vectores de la forma \( t \left(\begin{array}{c}1 \\ 1 \\ 1\end{array}\right) \), donde \( t \) es cualquier número real.

Step-by-step Solution

Answered by UpStudy AI and reviewed by a Professional Tutor
UpStudy ThothAI
Self-Developed and Ever-Improving
Thoth AI product is constantly being upgraded and optimized.
Covers All Major Subjects
Capable of handling homework in math, chemistry, biology, physics, and more.
Instant and Accurate
Provides immediate and precise solutions and guidance.
Try Now
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text

Enter your question here…

By image
Re-Upload
Uploaded Files
xxxx.png0%
Submit
📸 STUDY CAN BE A REAL STRUGGLE
Why Not UpStudy It?
Select your plan below
Premium

You can enjoy

  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to answer and
    solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic
  • Limited Solutions