Harrington Potter
04/08/2023 · Elementary School
3. Considere la matriz \[ A=\left(\begin{array}{rrr}3 & -1 & -1 \\ 1 & 1 & -1 \\ 1 & -1 & 1\end{array}\right) \] cuyo polinomio característico es \( p(\lambda)=(1-\lambda)(\lambda-2)^{2} \). (a) (10 puntos) Determine el espacio propio asociado a \( \lambda=1 \). (b) \( (10 \) puntos) Determine el espacio propio asociado a \( \lambda=2 \). (c) \( (4 \) puntos) iEs \( A \) diagonalizable? En caso que lo sea explicite las matrices \( P \) y \( D \) que verifican \( P^{-1} A P=D \).
Upstudy ThothAI Solution
Tutor-Verified Answer
Quick Answer
(a) El espacio propio asociado a \( \lambda=1 \) es el conjunto de vectores de la forma \( t \left(\begin{array}{c}1 \\ 1 \\ 1\end{array}\right) \), donde \( t \) es cualquier número real.
(b) El espacio propio asociado a \( \lambda=2 \) es el conjunto de vectores de la forma \( t \left(\begin{array}{c}1 \\ 1 \\ 1\end{array}\right) \), donde \( t \) es cualquier número real.
Step-by-step Solution
Answered by UpStudy AI and reviewed by a Professional Tutor
UpStudy ThothAI
Self-Developed and Ever-Improving
Thoth AI product is constantly being upgraded and optimized.
Covers All Major Subjects
Capable of handling homework in math, chemistry, biology, physics, and more.
Instant and Accurate
Provides immediate and precise solutions and guidance.
Try Now
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text
Enter your question here…
By image
Re-Upload
Submit