Q:
1- Refresenta gradicamente a funcoos:
a) \( g(x)=\left\{\begin{array}{l}-x+2 \text {, se } x<2 \\ x^{2}+1, \text { se } 2 \leqslant x<5 \\ -x+3, \text { se } x \geqslant 5\end{array}\right. \)
Q:
Express the point \( \left(9, \frac{\pi}{3}\right) \) in cartesian coordinates
Q:
4. Determine the domain of \( \frac{f}{g}(x) \); where \( f(x)=\frac{1}{x-5} \) and \( g(x)=\sqrt{x-3} \)
Q:
If \( f(x)=\sqrt{625-x^{2}} \) and \( g(x)=\sqrt{225-x^{2}} \)
what is the value of \( f(f(5))-g((g 5)) ? \)
\( f(5)=\sqrt{625}-5^{2}=16 \sqrt{6} \)
A) 0
B) 5
C) 10
D) 20
Q:
1. For the following polynomial functions, Determine the end behavior; that is,
find the power function that the graph of f resembles for large values of \( |x| \)
\( \begin{array}{ll}\text { (1) } f(x)=(x-5)^{3}(x+4)^{2} & \text { (2) } f(x)=3\left(x^{2}+8\right)\left(x^{2}+9\right)^{2}\end{array} \)
Q:
\( 1 \leftarrow \) Give the equations of any vertical, horizontal, or oblique asymptotes for the graph of the rational function.
\[ f(x)=\frac{3-6 x}{5 x+6} \]
Q:
Give the equations of any vertical, horizontal, or oblique asymptotes for the graph of the rational function.
\[ f(x)=\frac{4}{x-2} \]
Q:
Describe the end behavior of the graph of the polynomial function.
\( f(x)=8 x^{5}+2 x^{3}-3 x+4 \)
Q:
Decide whether \( f \) is even, odd, or neither.
\( f(x)=x^{4}-2 x^{2}+6 \)
Q:
Hallar el dominio de la siguiente función:
\( f(x)=\frac{1}{\sqrt{x^{3}+2 x^{2}-3 x}} \)
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text
Enter your question here…
By image
Re-Upload
Submit