Q:
What is the magnitude of the vector
defined by \( <5,12>? \)
Q:
Let \( f(x)=\frac{1}{x-4} \) and \( g(x)=\frac{5}{x}+4 \)
Then \( (f \circ g)(x)=\square \)
\( (g \circ f)(x)=\square \)
Q:
Use the properties of logarithms to evaluate each of the following
expressions.
\( \begin{array}{l}\text { (a) } 4 \ln ^{2}+\ln e^{9}=\square \\ \text { (b) } \log _{2} 5-\log _{2} 20=\square\end{array} \)
Q:
2. Determinantni hisoblang. \( \left|\begin{array}{cccc}8 & -7 & 6 & 1 \\ 3 & 5 & -1 & 4 \\ 0 & 3 & 2 & -3 \\ -1 & 0 & 3 & -2\end{array}\right| \)
Q:
2. Determinantni hisoblang. \( \left|\begin{array}{cccc}8 & -7 & 6 & 1 \\ 3 & 5 & -1 & 4 \\ 0 & 3 & 2 & -3 \\ -1 & 0 & 3 & -2\end{array}\right| \)
Q:
9. Para las siguientes funciones paramétricas:
\( \begin{array}{l}\text { a) Bosquejar el gráfico. } \\ \text { b) Eliminar el parámetro y hallar la ecuación cartesiana. } \\ \begin{array}{ll}x=1-t^{2} & x=\sqrt{t} \\ y=t-2 & y=1-t \\ -2 \leq t \leq 2 & 0 \leq t \leq 16\end{array}\end{array} \).
Q:
Graph the piecewise-defined function.
\( f(x)=\left\{\begin{aligned} x-2 & \text { if } x \leq-2 \\ -4 & \text { if } x>-2\end{aligned}\right. \)
Q:
Using visual observation, determine whether the graph is symmetric with respect to the
(a) \( x \)-axis, (b) \( y \)-axis, or \( (\mathrm{c}) \) the origin.
(a) Is the graph symmetric with respect to the \( x \)-axis? Choose the correct answer below.
A. No, because for \( \left(\frac{\pi}{4}, 4\right) \), the point \( \left(-\frac{\pi}{4}, 4\right) \) is not on the graph.
B. No, because for \( \left(\frac{\pi}{4}, 4\right) \), the point \( \left(\frac{\pi}{4},-4\right) \) is not on the graph.
C. Yes, because if \( (a, b) \) is on the graph, then so is \( (-a, b) \).
D. Yes, because if \( (a, b) \) is on the graph, then so is \( (a,-b) \).
(b) Is the graph symmetric with respect to the \( y \)-axis? Choose the correct answer below.
A. Yes, because if \( (a, b) \) is on the graph, then so is \( (-a, b) \).
Because for \( \left(\frac{\pi}{4}, 4\right) \), the point \( \left(-\frac{\pi}{4}, 4\right) \) is not on the graph.
C. No, because for \( \left(\frac{\pi}{4}, 4\right) \), the point \( \left(\frac{\pi}{4},-4\right) \) is not on the graph.
(c) Is the graph symmetric with respect to the origin? Choose the correct answer below.
A. Yes, because if \( (a, b) \) is on the graph, then so is \( (-a, b) \).
B. Yes, because if \( (a, b) \) is on the graph, then so is \( (-a,-b) \).
B C. Yes, because if \( (a, b) \) is on the graph, then so is \( (a,-b) \).
Q:
1. \( 25 x^{2}+y^{2}-200 x+6 y+384=0 \), centro
2. \( (x+1)^{2}+(y+8)^{2}=100 \), intersecciones con el eje \( x \)
3. \( y^{2}-(x-2)^{2}=1 \), intersecciones con el eje \( y \)
4. \( y^{2}-y+3 x=3 \), pendiente de la recta tangente en \( (1,1) \)
5. \( x=t^{3}, y=4 t^{3} \), nombre de la gráfica rectangular
6. \( x=t^{2}-1, y=t^{3}+t+1 \), intersecciones con el eje \( y \)
7. \( r=-2 \cos \theta \), nombre de la gráfica polar
8. \( r=2+\operatorname{sen} \theta \), nombre de la gráfica polar
19. \( r=\operatorname{sen} 3 \theta, \operatorname{tangentes~a~la~gráfica~en~el~origen~} \)
20. \( r=\frac{1}{2+5 \operatorname{sen} \theta} \), excentricidad
21. \( r=\frac{10}{1-\operatorname{sen} \theta} \), foco yértice
22. \( r=\frac{12}{2+\cos \theta} \), centro
Q:
Empic ta aproximacion para
C) \( \sqrt{102}+\sqrt[4]{80} \)
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text
Enter your question here…
By image
Re-Upload
Submit