Trigonometry Questions from Dec 03,2024

Browse the Trigonometry Q&A Archive for Dec 03,2024, featuring a collection of homework questions and answers from this day. Find detailed solutions to enhance your understanding.

error msg
8. Un bombero debe apagar un incendio en una ventana, de la base del edificio al bombero hay una distancia de 20 m , la altura de la vista del bombero esta a 1.82 m , el angulo de la vista del bombero es de \( 54^{\circ} \). ¿Qué altura tiene el edificio? Dibuje el triangulo resultante \( \cot (-\mathrm{x}) \sin x=\sin x \) Separate the quotient into two terms. Apply a reciprocal identity. Factor out the greatest common factor. Apply the appropriate even-odd identity. To verity the identity, start with the more complicated side and transform it to look like the other side. Choose the correct transformations and transform the expression at each step. \[ \begin{array}{l}\text { csc } x \cdot \cos x= \\ \text { Apply the appropriate even-odd identity. } \\ \text { Factor out the greatest common factor. } \\ \text { Express in terms of sines and cosines. } \\ \text { Separate the quotient on the left side into two terms. }\end{array} . \] 5. Sarah is standing on a cliff-top and observes the angle of depression to a point A in a deep gorge to be \( 50^{\circ} \). Sarah then turns in the opposite direction and observes another point \( B \) in a second gorge to have an angle of depression of \( 65^{\circ} \). The points, A and B, are both on the same horizontal level 45 m beneath Sarah. Find the distance between A and B. Verify the identity. \[ \csc x \cdot \cos x=\cot x \] Determine the amplitude of the function \( y=\frac{1}{2} \sin x \). Graph the function and \( y=\sin x \). The amplitude is (Simplify your answer.) Contact: Ms. Osborne (592) 6796884 or Mr. Walker (592) 6869189 A. mathat: [email protected] and bottom of a flag-staff standing on the tower as \( 62^{\circ} \) and \( 60^{\circ} \) respectively. Calculate the height of the flagstaff. Determine the amplitude of the function \( y=4 \boldsymbol{\operatorname { s i n }} x \). Graph the function and \( y=\sin x \). The amplitude is \( \square \). (Simplify your answer.) ENTREGA INDIVIDUAL Parte 1: Grados y Radianes \( \begin{array}{lll}\text { - Convierta de grados a radianes y viceversa } \\ \begin{array}{lll}\text { 1. } 45^{\circ} & 2.90^{\circ} & \text { 3. } 60^{\circ} \\ \text { 4. } \frac{\pi}{30} \mathrm{rad} & 5.7 \pi \mathrm{rad} & \text { 6. } 9 \mathrm{rad}\end{array}\end{array} \). Describe how the graph of the function \( f(x)=\sin \left(x-\frac{\pi}{6}\right) \) differs from the graph of \( \sin x \) (1 point) It shifts the graph of \( \sin x \) to the right by \( \frac{\pi}{6} \) units. It shifts the graph of \( \sin x \) up by \( \frac{\pi}{6} \) units. It shifts the graph of \( \sin x \) down by \( \frac{\pi}{6} \) units.
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy